Best practices for using flash in hyperscale software storage architectures

Brandon Hoang
Solutions Architect

HEDVIG
Software-Defined Storage (SDS)

Double-digit growth
A $2.8 billion market by 2017

IDC 2015
Who is Hedvig?

- Founded in 2012 by Avinash Lakshman
 - Co-inventor of Amazon Dynamo and inventor of Apache Cassandra
- Develop the Hedvig Distributed Storage Platform
 - A software-defined storage solution
Anatomy of a distributed, hyperscale storage system

Each node hosts:
• Metadata
• Data

Hosts access storage tier via storage proxies

Scale-out storage tier with commodity servers

Application tier
Taking advantage of flash w/ SDS

• At the storage server node
 – Store metadata on SSD: fast lookups and tracking
 – Write-optimization: sequentialize random I/O
 – Auto-tier and cache active data on SSDs: speed access to hot data and buffer HDD capacity tier
 – Provision volumes on “all-flash” persistent storage (aka “pin to flash”): dedicated, consistent performance for latency sensitive apps

• At the application host
 – Cache hot data on local SSD or PCIe flash to accelerate access and avoid network latencies
Biggest flash benefit to hyperscale: Sequentializing random I/O

1. Application writes data in random blocks, and gets immediate ack from cluster.
2. Storage cluster sequentializes incoming blocks (in RAM+SSD) into larger chunks.
3. Larger sequentialized data chunks written to underlying disks according to policy.
Three ways flash is used in hyperscale systems

Read/write cache on storage nodes

“Pin to flash” dedicated primary storage volume

Client side read cache
Option #1: Node OS storage

Type of flash:
SLC/MLC SSDs or PCIe Flash

Use of flash:
- Store metadata for fast operations – dedupe, compression, snaps, clones
- Autotiering to ensure hot data is migrated to flash
- Write logs for metadata and data

Typical configuration:
2x 300GB MLC SAS/SATA SSDs
Option #2: Node volume storage

Type of flash: SLC/MLC SSDs or PCIe Flash

Use of flash:
-- All-flash virtual volumes for dedicated, consistent performance on a per-app basis
-- Flash performance for read and write operations

Typical configuration:
2x 800GB MLC SAS/SATA SSDs

Read/write cache on storage nodes

"Pin to flash" dedicated primary storage volume

Client side read cache
Option #3: Client-side cache

Typical application server can deliver 65K IOPs vs. 15K without flash

Type of flash:
SLC/MLC SSDs or PCIe Flash

Use of flash:
- Write-through cache to store hot blocks
- Local metadata storage

Typical configuration:
800GB MLC SAS/SATA SSDs

Read/write cache on storage nodes
“Pin to flash” dedicated primary storage volume
Client side read cache
Results: Law Firm

• Challenge:
 – Needed quick, reliable indexing and lookups of massive 100 million active client legal docs
 – Traditional NAS underperformed required access time
 – Standalone servers with flash performed well, but predictably ran out of space

• Solution/Result:
 – Hedvig software-defined storage with SSD/HDD and client-side flash caching
 – ~9x faster performance with flash
 – Scale-out architecture simplifies growth and expansion

<table>
<thead>
<tr>
<th></th>
<th>No flash</th>
<th>With flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency (ms)</td>
<td>7000</td>
<td>1250</td>
</tr>
<tr>
<td>IOPS</td>
<td>0</td>
<td>70000</td>
</tr>
</tbody>
</table>
Thank you!

For more on Hedvig visit:
• Web: hedviginc.com
• Twitter: @hedviginc