Flaé_hMeiﬁory

 SUMMIT

VLSI Architectures for NB-LDPC Decoders

Xinmiao Zhang
SanDisk Corporation

Flash Memory Summit 2015 August 12, 2015

Santa Clara, CA



rlaénMemory Binary vs Non-binary (NB)
Low-Density Parity-Check (LDPC) Codes

» Binary LDPC codes
= Require long codeword length
= Good performance for random errors

» Non-binary LDPC codes
= Better performance with moderate codeword length
= Lower error-floor
= Better at correcting clustered errors



FlashMemory Qutline

 SuUMMIT |

» NB-LDPC codes & design challenges
» NB-LDPC decoding algorithms
» Check node processing architectures
» Overall decoder architectures

» Comparisons & conclusions



FlashMemory | DPC Codes

» LDPC codes are linear block codes, specified by the parity
check matrix H

> A received sequence x is a codeword iff HxT = 0

Binary LDPC code variable nodes
Xo X1 Xz X3 X4 X5 W
1 01 0 0 1
77 1 1 0 0 1 0 check nodes
010101 check equation
L s > xo+ a3+ 14 =0




FlashMemory NB-L. DPC Codes

» Nonzero entries of H are elements of GF(q) (¢ > 2)

a 0 a% 0 0 @«
g_|e® > 0 0 a O
|l 0 a© 0 o 0 a2

I O 0 a3 a* a O === 0:3:172 + 0:45173 +oary =0

Decoder implementation challenges:
Vectors of g messages need to be computed and stored

\/

= [arge memory requirement
= much more complicated check node processing



FashMemory NB-LDPC Decoding Algorithms

» Belief propagation (BP)
=  probability-domain: need convolutions
= frequency-domain: still need many multipliers
= |og-domain: need many look-up tables

= mixed-domain: need many look-up tables

» Extended Min-sum (EMS) algorithm Log-domain

» Min-max algorithm approximations of BP




FlashMemory \in-max NB-LDPC Decoding Algorithm

messages are represented as log likelihood ratios (LLRs)
llr(a) =log(P(z = &)/ P(z = «)) &: most likely finite field element

Initialization: wum n(a) = yn(a) variable nodes

Iterations: AN

" Check node processing

m,n = min max i (s
[v j (a) (Gj)eﬁ(m|an:a)(jesv(m)\nu aj(a’j))]

= Variable node processing

um,n(a) = m(a) + Xics.(n)\m Vin(a)
= A posteriori information computation

;S"n(a) — "Yn(of) + ZiESc(n) 'U?l,n(a)

check nodes




FlashMemory \Jin-max Check Node Unit (CNUS)

» Forward-backward
» Path-construction based
» Simplified Min-max
» Basis-construction based

» Modified trellis-based using syndromes



RashMemory o \ard-backward Check Node Processing

I I I I S I I
forward
=B
merging

Elementary step:
file) = min  (max(f;—1(a'), ummn;(&")))

o' +a'=a

Disadvantages:
= large number of intermediate results need to be stored

= Large number of recursive computations



FlashMemory Trellis Representation of Messages

vmn @) = min ( U, i(a;))
Eﬁ(m|an:a) JESy(m)\n TN
A \4 \/ . _ ¥ L
v2c message S eeoe
vectors oo o
© © © © (<] © ©
o o o o °a o o
(-] © (-] (-] (-] (-]
© 6 0

» (a;) corresponds to a path that passes exactly one node in each
stage, except the stage for variable node n

» Computing vm,.n is equivalent to finding the paths with the smallest
LLRs and different finite field elements

10



FlashMemory Relaxations on Path Configuration

» Relaxation: multiple nodes in a path can come from the same stage

/\

4

» A node can be considered as an approximation of the node with the
same field element from another stage

» The over or under-estimated LLR does not have much noticeable
effect on the Min-max decoding performance

11



FlashMemory Basis-construction Check Node Processing

{wi,wo,...,wp}is a basis of GF(2P)

any a € GF(2P) can be written as a linear combination of w;

v

vm,n(a) can be computed parallely from nodes in minimum basis B;

p nodes ¢ stagej
with minimum nonzero LLRs
&z independent field elements

> Using the relaxation, the construction ofBj can be greatly simplied

» Each B;can be derived by updating a global basis with p+ne entries

12



FlashMemory Check Node Processing Using Syndromes

ol = e Lo e (49))

alternate approach l

» Compute syndromes w(a) = min  ( _max t, j(a;))

(aj )ET (m|a)
> Take out the contribution of the nodes in stage n from the

syndrome to derive c2v messages
ﬁm,n{ﬂ' R "’?a&ﬂ.j) — Hlin("ﬁm,n({-r o W*ER))' 'H-‘(t’.}'j o ﬁ'-m.._-n-(”:&ﬁ}))
R

* element of stage n in (a;) leading to w(a)
13



FlashMemory 1 dified Syndrome Computation: GF(4) Code

v2¢c message vectors syndromes

transformed trellis ﬂ=ﬂ 0 '-"'-" O
)= e+ 1@\ @) @ o \ok
f: a primitive @= "9. ‘ @ . . . .

min2
element of GF(4)

143 =p32 ‘I:B...@. .

» Need only one max comparator for each syndrome

Flash Memory Summit 2015 14
Santa Clara, CA



FlashMemory \ 10 dified Message Recovery from Syndromes

» Upmn(a) forn € S,(m) are recovered from w(a)

inputs: w(«), minl(e), idx(«), min2(«), # of deviation nodes in w(a) path
for each o #£ 0
If there i1s one deviation node, and it is 1n stage i:

. L )manl(a) if n £
Om.n (@) = {?'.‘r?:i-nﬁ((}-) if n==1
If there are two deviation nodes, and they are in stages 7 and j:
w(a) if n#£14,j
Umn(a) = 4 minl(«) if n =i or j and n # idr(a)

min2(«) if n =14 or j and n = idx(w)

» Implementable by simple index testers and multiplexors

15



FlashMemory Layered Quasi-cyclic Decoder Architectures

 SUMMIT

Decoder with forward-backward CNU Decoder with CNUs using minl, min2
Channel LLRs

]
%—?/ Memory
Q%; | mutir’:gtg& , T
permutation i .
routing & Memory - Etrellls transform
permutation P . {:}( -
1
D, - i c2v message i
N | memony . trellis transform \’{D trellis transform
\N—/—————— —7 =
buffer N4 R % . . .
3 B | |c2v computation| |c2v computation
CNUs } N - .
min1 & min2 H
SREEL i Memory E

= smaller memory
= more efficient CNUs

16



FlashMemory Comparisons & Conclusions: GF(qg) Codes

 SuUMMIT |
A. Forward-backward
= Not efficient

B. Path construction

= |ntra-vector serial computation

= Can keep < g messages, memory advantage for larger g
C. Simplified Min-max

= Intra-vector parallel computation

= Complexity close to D and E for small g; less efficient for larger g
D. Basis construction

= Intra-vector parallel computation
= May have smaller area than E for larger g

E. Modified Trellis-based using syndromes
= Intra-vector parallel computation; enable efficient inter-vector parallel processing
= Most efficient for GF(4) codes 17



FIa%JiMeiﬁory

 SUMMIT

Questions?

Xinmiao.zhang@sandisk.com

Flash Memory Summit 2015

18



	VLSI Architectures for NB-LDPC Decoders
	Slide Number 2
	Outline
	LDPC Codes
	NB-LDPC Codes
	Slide Number 6
	Min-max NB-LDPC Decoding Algorithm
	Min-max Check Node Unit (CNUs)
	Forward-backward Check Node Processing 
	Slide Number 10
	Relaxations on Path Configuration
	Basis-construction Check Node Processing
	Slide Number 13
	Modified Syndrome Computation: GF(4) Code
	Modified Message Recovery from Syndromes
	Layered Quasi-cyclic Decoder Architectures 
	Slide Number 17
	Questions?

