Read Disturb Characterization for Next-Generation Flash Systems

Gary Tressler, Tom Griffin and Patrick Breen
IBM Corporation
Agenda

• Industry Trend
• Background
• Mixed Mode Analysis
• Influence of Environment / Flash Access Mode
• Read Disturb Tolerance vs. Technology
• MLC Read Cycling Analysis
• Initial TLC Analysis
• Dynamic Analysis
• Summary
Read Disturb – Industry Trend

• With technology advancement, Flash industry began to make tradeoffs to maintain endurance levels
 • Read disturb tolerances were reduced in some cases

• Read intensive Flash applications have increased focus on read disturb failure mechanism

• Growth and application of TLC have also highlighted read disturb tolerance as a key specification

• Traditionally, read disturb specifications are not widely available in supplier data sheets

• NET: Based on technology advancement, emergence of read intensive applications and TLC, read disturb tolerances must be thoroughly evaluated and better understood
Read Disturb Characterization for Next-Generation Flash Systems

Read Disturb – Background

• Read disturb occurs when programmed blocks are read repeatedly without any erases in between these reads
 – When one wordline is read, other wordlines in the block are weakly programmed (V_{pass} applied)
 – Repeated reads without an erase can cause cells to shift enough to change their state
 – Read disturb effect is exacerbated by P/E cycling stress
 – Block erase resets read disturb effect

• JEDEC read disturb test specification is to read all pages in a Flash block sequentially

• Read disturb effects are more pronounced in smaller technology nodes
Mixed Mode Analysis

- Experiment confirms
 - **PE cycling stress worsens read disturb effect**
 - **Block erase resets read disturb effect**
 - **Read cycling interspersed between PE cycles does not affect wear rate**

2 PE Cycles Inserted Between 30K Read Cycle Runs (3002 PE Cycles Total)

3K PE Cycles Inserted Between 30K Read Cycle Runs (6K PE Cycles Total)
MLC Read Cycling – Temperature Analysis

- Slight relative offsets in BER curves across temperature track with initial read cycle offsets
 - No indication of temperature sensitivity

- Lower BER profile at 40°C points to variability in overall results
 - No indication of temperature sensitivity
MLC Read Cycling – Address Sequencing Analysis

Vendor A (1nm)

Sequential

Random

Vendor B (1nm)

Sequential

Random

Note:
Nominal - No Read Optimization
Optimal - Read Optimization

Seqential - block read = all 'X' pages read in sequence
Random - block read = 'X' page reads with random page addressing

- No significant differences in BER profiles seen between
 - Sequential page access
 - Random page access

for multiple suppliers / technologies
Notable degradation of MLC read cycle performance with technology progression
- 1znm read error rate is 1.5 orders of magnitude worse than 3xnm
- However, resulting read error rate also driven by degradation in PE cycle capability vs. technology
- 1znm read cycle tolerance is slightly improved from prior generation
- 3D NAND expected to provide temporary relief of read disturb effects, but further degradation must be monitored
MLC Read Cycling Analysis

- Read cycling BER accelerates at higher rate after 10K PE cycles (relative to 3K PE cycles)
- Indication of increased wear due to PE cycling contributing to higher Read Cycling BER

• Read cycling BER acceleration (post 10K PE cycling) is more prominent in upper pages
Initial TLC Analysis

- **Initial TLC analysis shows solid read cycling BER performance (relative to PE cycling)**
- **May be an appropriate design point for read intensive applications**
- **Minimal gain observed with read level optimization for both PE cycling and read cycling**
Dynamic Read Disturb Analysis

- Some applications are dependent on manipulation of partially programmed Flash blocks
- Read disturb effect is much worse for partially programmed blocks (un-programmed pages once programmed are degraded)
 - Affects erase states dramatically
 - “Reset” is performed through typical block erase operation – degraded BER performance no longer evident

- 6K PE cycles, Partial program of block, 30K read cycles of programmed pages with 3K readouts
- Program remaining un-programmed pages, readout, final PE cycle with readout

- 6K PE cycles, Full program of block, 30K read cycles of programmed pages with 3K readouts
- Final PE cycle with readout
Summary

• With the emergence of read intensive applications and TLC, the Flash read disturb failure mechanism must be thoroughly evaluated and well understood
• Read disturb effects are more pronounced with the progression of technology groundrules
• Initial TLC read disturb tolerance analysis looks promising
• Dynamic Flash operations require careful consideration of read disturb effects
• Read disturb tolerance specifications must be documented in supplier Flash component data sheets
Thank You

Gary Tressler
IBM Corporation
gtressle@us.ibm.com