“High Radix” LDPC
A Silicon Saving Approach

Oliver Hambrey
Siglead Europe Limited
ECC for SSD: Where We Started
ECC for SSD: Where We Are Now

Flash Memory Summit 2015
Santa Clara, CA
ECC for SSD: Where We Go Next

Iterative BCH
- Theoretical error performance often computable
- Cannot be soft decoded
- Hard decoding does not require channel information

LDPC code
- Control/prediction of error floor difficult
- Excellent performance under soft decoding
- Can we obtain/process soft information?
What is “High Radix” LDPC?

- replacement for low rate/high correctability BCH code
 - designed for hard decoding
 - silicon/power budget must be smaller
 - error correction capabilities must be stronger
 - performance must be accurately estimatable
- linear ECC with sparse edge matrix representation
- multi-bit symbols, not bits
 - not restricted by Galois arithmetic
“High Radix” LDPC: Tanner Graph

merge variable/check nodes of binary LDPC…
“High Radix” LDPC: Tanner Graph

merge variable/check nodes of binary LDPC...

...to get variable/check nodes of symbols + edges labels
"High Radix" LDPC: Edge Matrix

- edge label is matrix representation of merged edges of binary LDPC

$$h_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
“High Radix” LDPC Edge Matrix

- “High Radix” LDPC edge matrix is a matrix of sub matrices!

\[H = \begin{bmatrix}
 h_1 & h_2 & 0 & 0 & 0 & 0 & h_0 & 0 \\
 h_0 & 0 & h_1 & h_2 & 0 & 0 & 0 & 0 \\
 0 & 0 & h_0 & 0 & h_1 & h_2 & 0 & 0 \\
 0 & 0 & 0 & 0 & h_0 & 0 & h_1 & h_2
\end{bmatrix} \]

where
\[h_0 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad h_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \] and
\[h_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
“High Radix” LDPC: Decoding

➢ Cascade decoding
“High Radix” LDPC: Decoding

Cascade decoding
“High Radix” LDPC: Decoding

Cascade decoding
“High Radix” LDPC: Decoding

➢ Cascade decoding
“High Radix” LDPC: Decoding

✔ Cascade decoding
“High Radix” LDPC: Decoding

- Cascade decoding

[Diagram depicting cascade decoding with nodes labeled 2-bit, 4-bit, and connections between them]
“High Radix” LDPC: Decoding

- Cascade decoding
“High Radix” LDPC: Decoding

Cascade decoding

2 bit
4 bit
“High Radix” LDPC: Decoding

Cascade decoding

Flash Memory Summit 2015
Santa Clara, CA
“High Radix” LDPC: Decoding

Cascade decoding
“High Radix” LDPC for SSD

just a flavor to spark your curiosity!

\[
H = \begin{bmatrix}
h_0 \\
h_{255}
\end{bmatrix}
\]

\[
\begin{array}{c c}
16 & \uparrow \\
136 & \\
\end{array}
\]

edge matrix: 16x136 containing 256 non-zero sub matrices

HRLDPC(48128,32768)

- hard error correction
 - no channel information needed

- 4kB frame size

- combats high raw bit error rate
 - in excess of 1%

- low rate ECC
 - step down from 16kB to 12kB user information per page

- higher/lower code rate/frame size also possible
Binary Symmetric Channel Correctability

3 codes:

- 16x[BCH(3008,2048)] - 80bit correctable
- BCH(48128,32768) - 960bit correctable
- HRLDPC(48128,32768) - simulated (99% CI)

HRLDPC tolerates higher RBER than 960bit correctable BCH code
HRLDPC has accurate error floor estimation
Silicon Saving

4kB BCH silicon

90% reduction in silicon size

4kB “High Radix” LDPC silicon

no compromise in throughput
VISIT OUR BOOTH!

BOOTH 900
(FAR RIGHT CORNER)

- take control of our NAND analyzer systems
 - SigNASII
 - SigNAS3

 NAND supplied
 or
 BRING YOUR OWN!

- SL2007 – SSD controller IC
- discussion & chat

FLASH MEMORY
SUMMIT

SIGLEAD
EUROPE

SHOWCASE AREA

Flash Memory Summit 2015
Santa Clara, CA