Safely Overclocking Flash I/O in SSDs

Kai Zhao, SanDisk
Rino Mellini, PMC-Sierra
Tong Zhang, Rensselaer Polytechnic Institute
Outline

• Motivation – ECC capability may be under utilized
• Benefit – improve system performance, especially for read operations
• Reliability – leverage LDPC codes to mitigate the impact of overlocking
Page Reliability Variation

- Larger reliability variations for chips even from the same batch
- Raw BER varies dramatically under different P/E cycles and with different retention time
Data Link Overclocking

- Worst-case based ECC is under utilization in most of the time
- We could trade reliability (when raw BER is low) for performance
- One possible way – Overclocking on data link
Potential Benefits

- Total latency = Operation (read/program) latency + Data transfer latency + ECC decoding latency

\[\tau_{phy-acc} = \tau_{op} + \tau_{xfer} + \tau_{ECC} \]

- ECC decoding latency is relatively small

- Transfer latency is comparable to read latency

- Smaller transfer latency could significantly improve read performance
Practical Considerations

- Characterize errors caused by overclocking
 - Errors in the overclocked data link
 - Errors in the NAND flash cell array
- Overclocking for read and/or write path
 - Evaluate read/write path separately
 - Permanent errors on write path
- Adaptation of overclocking in late lifetime of the drive
 - Read retry
 - Multiple data transfer rate
Feasibility of Overclocking

- ONFI 2.2 compliant chips supporting data transfer rate up to 166 MBPS according to the datasheet
- Data link overclocked up to 275 MBPS

<table>
<thead>
<tr>
<th>Transfer Data Rate (MHz)</th>
<th>RBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td><10^{-5}</td>
</tr>
<tr>
<td>212.5</td>
<td><10^{-5}</td>
</tr>
<tr>
<td>225</td>
<td><10^{-5}</td>
</tr>
<tr>
<td>237.5</td>
<td><10^{-5}</td>
</tr>
<tr>
<td>250</td>
<td><10^{-5}</td>
</tr>
<tr>
<td>262.5</td>
<td><10^{-5}</td>
</tr>
<tr>
<td>275</td>
<td><10^{-5}</td>
</tr>
</tbody>
</table>

Different overclocking capability for the 2 planes
System Performance for Read Overclocking

- Read response time, page size is 8 kB
- Data link overclocked up to 275 MBPS

Comparison of average read response time reduction with respect to page size

Data transfer rate is 275 MBPS

Simulator: DiskSim with SSD addon
Traces: MSR Cambridge trace, UMASS trace repository
Late Lifetime Performance

- Average read response time under different adaption strategies
- Read retry vs. multi-transfer-rate for different planes
 - Read retry doesn’t sense the flash array, just re-transfer data
 - Direct lower transfer speed for the worse plane

![Graph showing normalized read response time vs. number of P/E cycles for different applications and read retry strategies.](image)

Read retry only

- 250 MBps
- Read-Retry, 10% retry probability
- Read-Retry, 5% retry probability
- Multi-Transfer-Rate

![Bar chart showing normalized read response time for different applications.](image)

- WebSearch
- Financial
- hm
- prj

![Line chart showing normalized read response time vs. number of P/E cycles.](image)

- 2500 to 5000
- 0.85 to 1.1
- 0.9 to 1.05
Late Lifetime Performance

- Average read response time when combining read retry and multi-transfer-rate
- After 4000 P/E cycles, only lower the transfer rate for Plane 0
Link Error Mitigation using LDPC

- Effectiveness of the proposed overclocking design strategy depends on how well the ECC can handle the extra errors
- Leveraging LDPC codes and data link error characteristics to
 - Improving the tolerance to overclocking induced errors, which can lead to lower data re-transfer rate
 - Reducing the average number of LDPC decoding iterations, which can lead to lower power consumption and higher decoding throughput
- Two design techniques
 - Overclocking-aware LLR Calculation
 - Inter-plane interleaving
Inter-plane Interleaving

- Each plane has its own page register and I/O circuitry
- Performance after overclocking may be varying
- In our measurement, Plane 0 is much more vulnerable to overclocking-induced I/O errors
Overclocking-aware LLR Calculation

- The input of LDPC code decoding is the estimated log-likelihood ratio (LLR)

\[
\text{LLR}(x_k) = \frac{p(x_k = 0|y_k)}{p(x_k = 1|y_k)}
\]

- Binary Asymmetric Channel (BAC). Different error characteristics for each wire and plane

- In the overclocked SSD read channel, LLR can be expressed as

\[
\text{LLR}(x_k) = \frac{\sum_{i=0}^{l} p_m^{(i)}(y_k|v_k = i)p(v_k = i|x_k = 0, c)}{\sum_{i=0}^{l} p_m^{(i)}(y_k|v_k = i)p(v_k = i|x_k = 1, c)}
\]
• Plane 0 suffers from more overclocking induced errors, moreover, these errors non-uniformly distributed across the 8-bit bus.

• The pattern ‘0’=>’1’ dominates the errors from Plane 0, while on Plane 1, patterns ‘0’=>’1’ and ‘1’=>’0’ evenly distributed.
Simulation Results

- LDPC decoding power reduction
- The decoding power is determined by the number of iterations
- Data re-transfer rate reduction
- Data link overclocked to 275 MBPS
Conclusion

• Overclock data link to fully utilize the ECC capability
• Read performance can be significantly improved
• Mitigate the impact of overclocking by leveraging LDPC codes and the error characterization.
Thank you