Controller Concepts for 1y/1z nm and 3D NAND Flash

Erich F. Haratsch
NAND Evolution

• Planar NAND scaling is coming to an end in the sub-20nm process
 • 15nm and 16nm NAND are the latest geometries
• Additional capacity by going from MLC to TLC
 • TLC NAND moving from USB drives to SSDs
• 3D NAND is the scaling path going forward
 • Both MLC and TLC versions have been announced
Challenges for Planar 1y/1z nm NAND

- Disturbance Mechanisms
 - Program/erase cycling, read disturb, retention, cell-to-cell coupling
 - Wider voltage distributions, less margin between distributions
- RBER Variations
 - Between dies, blocks, pages
- New programming algorithms
 - TLC NAND has a 3-step programming algorithm with increased data movement compared to MLC NAND
- Strong ECC and intelligent NAND management needed to achieve SSD-grade endurance, especially for TLC NAND
Trends for 3D NAND

• Scaling path towards 1Tb die capacities
 • Primary approach is addition of more vertical layers: 32 and 48 layers demonstrated so far, may go up to 100 layers

• Somewhat different disturbance mechanism
 • Less cell-to-cell coupling
 • New error paths due to 3D integration
 • Yield more challenging

• New programming mechanism with higher write performance
• Block sizes are likely to increase
• Strong ECC increases endurance compared to planar NAND and enables TLC NAND with MLC-like endurance
Controller Concepts to Manage 1y/1z and 3D NAND

- Intelligent noise handling
- Multi-level error correction
- Strong ECC: LDPC codes with hard and soft decision decoding
- Multiple and adaptive ECC code rates
- RAISE™
Intelligent Noise Handling

• Deal with noise sources by signal processing or NAND management instead of ECC wherever possible
 • Read disturb handling
 • Read voltage calibration
 • Cancellation of cell-to-cell coupling
• Strike right balance between ECC, recycling and retirement
Pre-Read Optimization: Read Voltage Calibration

- Optimizing read voltages reduces retry rate and extends endurance.
- Optimum read voltages shift as a function of endurance, retention, and read disturb.

Voltage distributions before/after cycling:

- Default read voltage
- Optimized read voltage

1ynm MLC

Per-Page RBER

- Avg, Default
- Max, Default
- Avg, Optimized
- Max, Optimized

Optimal RBER gain

PEC × 10^4
Multi-Level Error Correction

- Hard-decision LDPC decoding is on-the-fly error correction method
- Judiciously apply progressively stronger decoding methods such as soft-decision LDPC decoding and DSP technology only as necessary
- Specialized noise handling techniques for P/E cycling, retention, read disturb, etc.
- Optimize time-to-data
Error Correction Concepts

- Earlier steps in read recovery have high probability of success with low latency in order to minimize time-to-data
 - Hard LDPC followed by soft LDPC followed by RAISE™
- Proactively adjust read voltages to improve RBER
- Eventually recycle data after failures due to retention or read disturb
- Apply stronger code rate for failures due to flash wear

- Foreground tasks
 - Hard and soft LDPC decoding
 - RAISE™

- Background tasks
 - Pre-read optimization
 - Read disturb handling
 - Code rate adjustment
Hard/Soft LDPC vs. BCH Capability

- Target code word failure rate for hard decoding is low
- Hard decoding failure rate defines trigger point for soft decoding
- Impact of soft decoding to read performance is low
- Hard LDPC error rate determines on-the-fly RBER capability
- Soft LDPC error rate guarantees reliability at target UBER
- Hard + infrequent soft LDPC decoding provides significant RBER gain over BCH
Multiple Code Rates and Code Rate Granularity

- ECC requirements vary between flash vendors, geometries, MLC/TLC, planar/3D
- Significant RBER differences across different page types and blocks
- Controller needs capability to support multiple codes simultaneously with sufficient code rate granularity
- Parameters:
 - User data and parity length determine code rate = correction strength
 - Codeword length and number of codewords per physical flash page determine padding = format efficiency
Switching Code Rates

- Multiple LDPC codes cover wide RBER range
- As NAND flash ages, controller switches to the next stronger code
- Read performance improves, since stronger LDPC codes converge faster
Adaptive Code Rates

- Flash at beginning of life (BOL) is more robust, requires less ECC: use more free space for overprovisioning and increase performance
- As drive reaches end of life (EOL), increase ECC to maintain readability and increase endurance beyond NAND spec

Conventional Error Correction:
Stores fixed ECC in spare field

Adaptive ECC (BOL):
Stores ECC in a portion of spare field and increase OP

Adaptive ECC (EOL):
Stores ECC in spare field and uses some of the NAND page

Adaptive ECC allows for more free space @ BOL = Higher Performance
Soft LDPC Levels

- Sequence of retries with varying read voltage settings
- Computation of soft information (LLRs) based on multiple read decisions
- Additional signal processing increases reliability

Read voltage placements for soft LDPC:

- Default read voltage
- Soft LDPC read voltages
RAISE™: Redundant Array of Independent Silicon Elements

- RAID-like data protection within the drive
- Writes data across multiple dies
- Corrects full page, block or die failures when all SLDPC levels fail
Conclusion

• Latest memory geometries demand intelligent NAND management features
• 3D NAND will still rely on strong ECC and advanced NAND management features to enable high endurance and to make TLC mainstream for SSD applications
Thank You! Questions?

Visit Seagate Booth #505

Learn how Seagate accelerates storage with one of the broadest SSD and Flash portfolios in the market

www.seagate.com/flash