High Performance, Highly Scalable Storage Architecture Using NVMe

Bob Hansen,
VP System Architecture
bob@apeirondata.com
External, Virtualized NVMe Storage
Apeiron Data Fabric™

Apeiron’s *Shared DAS™* virtualization platform delivers industry leading latency and bandwidth, accelerating Real Time Big Data analytics, while optimizing scale-out cluster efficiency.

Apeiron's Data Fabric delivers seamless scalability and easy manageability.

Come visit us at Booth 819
Agenda

• “Real Time, Big Data” What is that?
• Applications with enhanced user experience requires
 • High IOP performance & low-latency
 – Storage performance = $$ PROFITS
• Scalability
• Scale out, in-memory compute/storage architecture evolution
 – In-memory => in-box flash => external flash
• The Ideal, Very High Performance scale out system
• Apeiron’s Shared DAS™ Architecture
High IOP Application
Enhanced User Experience

- Customer personalization and simplified data management
- Fortune 500 companies mid-layer meta cache rapidly growing
- Kayak
 - Caching aged airline quotes to speed service
- Netflix
 - Personalization for >50M customers
- Amadeus
 - 3.7 Million Bookings per Day
Ad Tech Example

- Web page request
- Deliver ad
- Log results
- Bid for ad
- Match request to user
- Match user to ad
- Storage IOPs / latency = $$

- >1 billion consumers
- >3 billion devices

Deliver Ad within ms

Fast Lookup (<1ms)
Read consumer profile
Update profile

Lookup Available Ads
Rank adds for best match

Determine best ROI

Log transaction

Win

Lose

Log results

Win

NoSQL solution
– Scale out nodes with dataset in-memory

Scale-out in-memory goodness
• Shared nothing compute nodes scale well
• Database is “sharded” evenly across all nodes
• Data set in-memory is VERY FAST
• To scale – just add another node, shard the DB again and go

Issues
• DRAM can be VERY expensive
• Node failure = very long recovery time
 • Data at risk during recovery
• As data set grows more servers must be added
 • = higher cost and footprint
• CPU to mem ratio cannot be optimized

This breaks down as you approach 100TB
Expensive DRAM? Add Internal Flash

Scale-out in-memory goodness
- Share nothing compute nodes scale well
- Database is “sharded” evenly across all nodes
- Data set in-memory is VERY FAST
- *Data in flash is FAST*
- To scale – just add another node, shard the DB again and go

Issues
- Flash size must be equal on all nodes
 - Adding storage = downtime
- Node failure = very long recovery time
 - Data at risk during recovery
- As data set grows more nodes must be added
 - = higher cost and foot print
- CPU to mem ratio can not be optimized

Storage Management is a Pain!
Very High Performance External Storage is the answer

Shared DAS Goodness
- CPU and Storage scale independently
 - Minimize cost / rack space
 - Improved CPU utilization
- Fine Grain, On-line provisioning
- Server failures don’t take out data
 - Minimize failure recovery time

Issues
- Performance
 - IOPs and Predictable Latency
- Availability
 - HA design and Replicas
- Scale –
 - PBs and 100s of nodes
Storage technology choices
IOPs / latency performance

SSD Performance

- 15K HDD – 210 IOPs
- 6Gb SATA SSD – 90K IOPs*
- 12Gb SAS SSD – 155K IOPs*
- NVMe SSD >> 700K IOPs*

SATA and SAS can’t cut it!

* Typical 4K Random Reads

Objectives

- Performance
- Availability
- Scale

Get Out of the Box!

JBOB

Driver
HBA
Point to Point
SSD

Networked NVMe

Driver
HBA
Fabric
CPU
NVMe SSD

Fast but Doesn’t Scale

CPU is the Bottleneck

Kills Performance or Adds Cost$$
The Ideal Solution - Shared Direct Attached Storage

• Best performing persistent storage media
 – *Standard NVMe SSDs* – also best cost
• Bare metal Ethernet storage network HW
 – Low cost, industry standard networking
• Add value where you get best ROI
 – Data path optimization
 – SSD Virtualization
 – High availability with no performance penalty
• Best in class management
 – On-line provisioning and failure recovery
 – Storage performance statistics / predictive modeling

Keep it simple!

Deliver raw NVMe performance to the application
Why not “PCIe on a rope”?

A PCIe storage network is possible but faces several challenges -

- PCIe is not a network
 - PCIe is an evolution and extension to a parallel system bus
 - Initially scoped to support a handful of devices
- PCIe was not designed to be resilient
 - Bus errors = panic
- Failure isolation is a work in progress
- There are currently no PCIe networking standards

Why re-invent PCIe as a high cost, very complex external storage fabric?
Apeiron System Architecture

Shared DAS™

Application Servers

- **Switched Storage Fabric**
- **40Gb Bare Metal Ethernet Storage Network**
- **Very High Performance Network to SSD interface**

- Simple, scalable architecture with better than in-box flash performance
- Highly available, shared storage using standard SSDs and networking components
- Virtualized storage, on-line provisioning, failure isolation

Deliver raw NVMe performance to the application
Apeiron Technology Delivers

> NVMe Virtualization
> Performance Density
 • 18M IOPs, 72GB/s BW
 • In a 2U form factor
> < 90 µS 4K read latency P99
 • Ready for Next Gen NVM (<3 µS Fabric Latency)

Come visit us at Booth 819
“All the simplicity and promise of DAS with the efficiency and capability of network attached storage.”