

PCIe/NVMe in Mobile Devices

Better Storage Enables Better Mobile Devices

Elad Baram, Senior Director, Product Management for Client Platforms Solutions, SanDisk Corporation

Flash Forward Looking Statements

During our meeting today, we may make forward-looking statements.

Any statement that refers to expectations, projections or other characterizations of future events or circumstances is a forward-looking statement, including those relating to market position, market growth, product sales, industry trends, supply chain, future memory technology, production capacity, production costs, technology transitions, construction schedules, production starts, and future products. This presentation contains information from third parties, which reflect their projections as of the date of issuance. Actual results may differ materially from those expressed in these forward-looking statements due to factors detailed under the caption "Risk Factors" and elsewhere in the documents we file from time to time with the SEC, including our annual and guarterly reports. We undertake no obligation to update these forward-looking statements, which speak only as of the date hereof or the date of issuance by a third party, as the case may be.

Tablet or Laptop? ARM or x86? Windows / Android? Mobile?

- Smart client device segments converging/blurring
- Mobile platforms are computing platforms
 - Content creation / productivity is the key differentiation today
- Computing platforms become truly mobile

Client-Grade Server &

Storage Solutions in Smart Client Devices Current View

Alternatives for Future Storage Solutions in Mobile

Extend eMMC

- HS400 \rightarrow HS533 \rightarrow HS667
- UFS
- PCIe/NVMe

PCIe is The Future of Mobile Storage

Key advantages of PCIe/NVMe

- Bandwidth and scalability
- Availability, compatibility
- Lowest latency SW stack
- Simplicity
- Smart architecture & design

Memory Technical Comparison

	ltem	eMMC	UFS 2.0	PCIe/NVMe	PCIe/NVMe
Phy/link	Interface	HS400→HS533	M-Phy Gear 3	Gen2	Gen3
	Bus speed MB/s	400 → 533	583	500	1000
	PHY overhead	N/A	8/10	8/10	128/130
	Pin Requirements	10	6 (per lane)	8	8
HW	Architecture	Master-Slave Host controller	Master-Slave Host controller	Smart device – Bus Master	Smart device – Bus Master
	Host Memory Buffer	N/A	Complex (UMA)	Native	Native
SW	Protocol Complexity	eMMC - simple	SCSI + UFS Complex	NVMe Simple	NVMe Simple
	Ovearhead	High	High	Low	Low
	Queue architecture	Single queue	Single queue	Multi queue	Multi queue

PCle used for connectivity today

- Storage data transactions manage by AP & host controller
- No direct connection between sub systems and storage

Smart Devices Architecture

- <u>Fastest</u> download/ upload speeds
 - Efficient data
 transfer paths
- <u>Lowest</u> power architecture
- Minimize AP involvement in transactions

NVMe has Superior SW Stack

Low Latency

- Efficient driver stack
- Short code paths
- Supports parallelism in platform
 - Mobile SoC are quad core today, and increasing
 - Increasing multitasking in Mobile
- Simple stack
 - Supportability
 - Easier development

Enabling NVMe on ARM/Linux

- NVMe is part of standard Linux Kernel
- NVIDIA TK1 reference Platform (ARM, PCIe port)
- NVMe SSD immediately enabled with open source driver

Define small package for Mobile

NVMe: ROM based boot scheme

Storage Solutions in BGAs

DRAM-less PCIe/NVMe SSDs can be packaged in 11.5 x 13mm

Storage Solutions in Smart Client Devices Future Vision

The best evolution for Mobile storage is PCIe/NVMe

- Leverage the investments in client compute platforms
- Consolidation of storage solutions
- NVMe superiority over SCSI
- PCIe scalability
- PCIe bus architecture
- PCIe exists in Mobile platform today
- Impact beyond storage better SoC design

Thank You Questions? Please visit SanDisk Booth #207