How Good Is Your Memory?
An Architect’s Look Inside SSDs

Michael Abraham (mabraham@micron.com)
Business Line Manager
Micron Technology, Inc.

Santa Clara, CA
August 2015
Early Storage Optimizations

- Faster
- Upgradeable
- Slightly more expensive

- Slow
- Early obsolescence
- Inexpensive solution

μC

NAND

SmartMedia

Camera

μC/SRAM

μC/SRAM

NAND

CF/USB/SD
High-Level SSD Architecture

- **Firmware**
 - Power Management

- **CONNECTOR**
 - SATA / PCIe x2 / PCIe x4

- **μC**
 - Ch0
 - Ch(n-1)

- **NAND**

- **DRAM**

- **Host Vcc**
The industry went through 7-9 NAND lithography transitions.
What Happened in That Decade?

- Density: 2Gb → 128Gb per die
- Interface: 40MHz SDR → 266MHz DDR
- Bits per Cell: SLC → MLC → TLC
- Planes: 1 → 2 → 4
- Page size: 2KB → 16KB
- Block size: 128KB → 8+MB
- Packaging: 1ch TSOP-48 → 4ch BGA
- ECC: 1-bit Hamming → RS?/BCH → LDPC
- Electrons per Cell State: > 300 → 16
- Engineering skill: 1 college kid → 3+ PhDs
Could We Scale Planar NAND Beyond 16nm?

- Lower cost per bit
- Higher ECC
- Longer array operations
- Less data retention
- Less endurance
- More PhDs
3D NAND: Standing NAND on Its Head

- 3D NAND cell architecture enables significant performance improvement
- 3D NAND cost improvement over planar expands with subsequent nodes
3D NAND cell design simultaneously improves performance and reliability

- Vertical stacking allows large number of electrons per cell independent of scaling
- No longer relying on lithography to continue scaling
- Decreased interference between cells translates into higher cycling endurance
- Uses familiar memory materials – CT or FG
3D NAND Enables New Die Densities

NAND Flash TAM by Density (Units)

- 512Gb (64GB)
- 256Gb (32GB)
- 128Gb (16GB)
- 64Gb (8GB)
- 32Gb (4GB)
- 16Gb (2GB)
- 8Gb (1GB)
- 4Gb
- 2Gb
- 1Gb

3D NAND in earnest here (256Gb)

Source: iSuppli 2Q15
3D TLC NAND Goes Mainstream

Source: iSuppli 2Q15

Standalone SLC is nearly non-existent
3D NAND Improves Array Performance

- Faster write bandwidth a result of larger number of data bytes per operation and a reduction in tPROG
ONFI 4 Results in Lower Energy

- ONFI 4.0 to be introduced with 3D NAND
- Interface up to 800MT/s throughput
- Reduces energy per bit with 1.2V interface
What’s New?

- Density: Introduction of 256Gb
- Interface: ONFI 4.0, 1.2V
- Bits per Cell: MLC, TLC with SLC modes
- Electrons per Cell State: ~200
- Page/block/plane architecture follow traditional NAND scaling path
- Engineering skill: 1 college kid, 3+ PhDs
Why So Long to 3D NAND?!

NAND Cost of Transition requires considerably new tooling

Transition CapEx/Wafer

25nm
20nm
16nm
3D Gen A
Questions?
About Michael Abraham

- Business Line Manager in the Storage Business Unit at Micron
- Former NAND Architect
- Covers emerging memories and 3D XPoint™
- IEEE Senior Member
- BS degree in Computer Engineering from Brigham Young University