NVMe Over Fabrics Agenda

- High-level Overview
 - Steve Sardella – EMC

- Performance and Emerging NVMs
 - Zvonimir Bandic – HGST

- Real World Use Cases
 - Idan Burstein - Mellanox
NVMe Over Fabrics

Overview

Steve Sardella
Distinguished Engineer, EMC

August 11, 2015
Topics

Why NVMe over Fabrics?

What is NVMe over Fabrics?

Status
A Brief History of NVMe over Fabrics

NVMe (over PCI Express) is an extremely successful standard, that continues to grow in popularity

But PCI Express is not without limitations
- Number of SSDs that can be supported
- Robustness and error handling
- Maturity as a Data Center “fabric”

The NVMe Specification did such a good job of defining an efficient queuing interface for storage, there is now a desire to extend it to other protocols
- These mature protocols are already established within the Data Center

Without standardization, there could be many disparate implementations, by protocol or by silicon vendor.
NVMe in a non-P PCIe environment (SCSI approach)

• Creating an NVMe Flash appliance containing hundreds of SSDs using SCSI based protocols requires protocol translation

• This adds latency and defeats a major benefit of NVMe

Concern: Low latency of next gen NVM lost in (SCSI) translation
Introducing NVMe over Fabrics

- Through encapsulation, NVMe over Fabrics transfers the vast majority of existing NVMe Commands, Responses, Structures and Concepts, end-to-end across a Fabric
- Maximizes HW/SW reuse
- Goal is to add less than 10 microseconds additional latency between a local and remote SSD
NVMe Multi-Fabric Model

NVMe 1.0-1.2 PCIe Implementations

- NVMe Host Software + NVMe PCIe Host Software
- PCIe Fabric
- PCIe Function
- NVMe PCIe I/F + NVMe Controller

NVMe over Fabrics Architecture Model

- NVMe Host Software (Common)
- NVMe Host Side Transport Abstraction
 - NVMe PCIe Host Software
 - PCIe Fabric
 - PCIe Function
 - NVMe PCIe I/F

- NVMe Controller Side Transport Abstraction
 - NVMe Controller (Common)
 - Future Fabric
 - Future Fabric Target
 - Future Fabric I/F
 - RDMA Fabric(s)
 - RDMA Target
 - NVMe RDMA I/F
 - NVMe Future Fabric Host SW
 - Future Fabric Target
NVMe Multi-Fabric Model
Specification Strategy and Breakdown of Work

Do not create a standalone specification

- Initial goal is to minimize changes to existing specification
- Cleanly separate out the non-PCIe NVMe Transport layers through separate chapters/sections
 - Fabrics Core (concepts and RDMA binding)
 - Fabrics Base Differences (SGL changes, etc.)
- Long-term goal is to create a Transport agnostic base spec

Break the work into functional sub-sections

- Capsules
- Discovery
- Connections
- Flow Control
- Naming
- Binding
- Error Handling
NVMe over Fabrics in the News

- Press Release and Intel iWARP demo at IDF 2014
- SNIA Webcast last November, which included NVMe and NVMe over Fabrics
 – Record breaking attendance
- Chelsio December announcement
- Mellanox/Mangstor demo announcement
• Extending NVMe’s capabilities and benefits to Fabrics is the next evolutionary step
• The team has achieved many milestones, and there is more work ahead
• The completed specification is scheduled to be released by the end of 2015
• The principles that make NVMe so popular today will continue to guide the Work Group for NVMe over Fabrics
 • Performance and efficiency
 • Low latency and low overhead
NVMe over Fabrics is generating excitement in the storage industry!

To be a part of it, become a member at: <nmvexpress.org>
Thank You!
Architected for Performance