NVMe Over Fabrics
Real World Use Cases and Applications

August 11, 2015

Idan Burstein
Storage Architect, Mellanox Technologies
History – Directly Attached to Shared

- Major advantages for sharing
 - High availability
 - Utilization and provisioning
 - Deduplication, compression
 - Thin provisioning
- Cost
- Historically disks were slow
 - Storage software stack was built for hard disks, very slow relatively to memory
 - Storage network was fast relative to disks, very slow relatively to memory
Evolution of Disk Arrays

Disk SAN
- Memory was used for caching
- Slow disks

Disk SAN with Local NVMe
- Storage network has become too slow
- Flash prices dropped
- NVMe
- Demand for cache intensive latency sensitive tasks
- NVMe devices used for caching
- Convergence to fast RDMA fabrics

Disk and Flash SAN Local Memory-Like NVM
- Demand for consistent performance from array
- HDD-like Flash disaggregation
- All flash arrays used for fast storage (caching)
- JBOD are used for cold storage

<1usec latency
Flash Array Use Case

- **Benefits of NVMe over Fabrics for disaggregation**
 - **Scale of RDMA**
 - Scaling out with RDMA networks, beyond PCIe scaling limitations
 - **Performance of RDMA**
 - Low latency, high bandwidth, parallel interface, locally attached like performance for accessing the devices
 - **Minimal CPU utilization at the subsystem and the host**
 - Lockless parallel design from client to disk
 - Reduction of protocol translation
 - Reduction of the CPU overhead of large data transfers through RDMA
 - **Convergence**
 - Compute and storage in the same network

- **Why is it good for backend?**
 - Scaling number of disks independent of the compute
 - Low latency, high bandwidth shared access
 - For example to enable HA and deduplication algorithms
 - Lower CPU%
 - Frontend servers - more CPU% for smart storage algorithms
 - Subsystem servers - enable low cost solutions

- **Why is it good for frontend?**
 - Lower CPU%
 - Frontend servers - More CPU% for smart storage algorithms
 - Client servers – Data is moved without CPU → more compute resources → $
History – Directly Attached to Shared

- Advantages for sharing
 - Management and failover
 - Thin provisioning
 - High availability
 - Utilization
 - Deduplication, compression
- Storage network was fast relative to disks, very slow relatively to memory
- Storage software stack was built for hard disks
Hyper-Converged Use Case

- Storage is distributed across the compute nodes and shared among the nodes
- Storage management and provisioning is software defined and distributed
- Benefits of NVMe over Fabrics
 - The most important: major reduction in CPU utilization while sharing devices, the compute nodes are not disrupted by storage → more compute resources for applications
 - Locally attached like performance
 - Scaling of RDMA network
 - Converged network
 - No protocol translation and no additional dedicated hardware
NBDx – NVMe over Fabrics POC

- Open source
- RDMA enabled
- Multi-Queued
 - From submission to completion, all on same core, initiator and target
- End-to-end lock free
- No protocol translations
- Userspace only demo – FIO
 - Engine that opens QPs, CQs and speaks NBDX

Performance results:
- 2us added latency for WRITEs
- 5us added latency for READs

https://github.com/accelio/NBDX
Future

Locally Attached

JBOD

Locally Attached

Network Connected Drive

Locally Attached

Locally Attached NVMe

NVMe over Fabrics JBOF/AFA

NVMe

NVMe over Fabrics Connected Drives

NVMe

Locally Attached Future Memory-Like NVM

Just a Bunch of Future Memory-Like NVM

Future Memory-Like NVM

Requires very fast network and new programming model

Requires tight integration of RDMA and NVMe