LDPC CODES WITH LOW ERROR-FLOOR

(Invited Paper)
Shu Lin

Department of Electrical and Computer Engineering
University of California, Davis
Davis, CA 95616, U.S.A.

(Co-author: Melody Diao, SandDisk, Milpitas, CA 95035)
Remark: This work was done at the UC-Davis while Dr. Diao was a Ph.D Student from 2011-2013.
I. Performance of an LDPC Code

- The performance of an LDPC code with iterative decoding is measured by:

1. The error performance (or coding gain or how close to the Shannon limit),
2. The rate of decoding convergence (how fast the decoding process terminates),
3. Error-floor (how low the error rate can achieve).
Error-Floor
II. Performance Factors

- The performance of an LDPC code is determined by a number of structural properties collectively:
 1. Minimum distance (or minimum weight);
 2. Girth of its Tanner graph;
 3. Cycle distribution of its Tanner graph;
 4. Connectivity;
5. Trapping set configurations and distribution of its Tanner graph;

6. Degree distributions of variable and check nodes of its Tanner graph;

7. Row redundancy of the parity-check matrix,

8. Other unknown structures

• No single structural property dominates the performance of a code.

• It is still unknown how the code performance depends on the above structural properties analytically as a function.
III. Categories of Constructions

• Major methods for constructing LDPC codes can be divided into two general categories:

 1. graph-theoretic-based constructions
 2. algebraic-based methods

• Most well known graph-theoretic-based construction methods are PEG (progressive edge growing) and protograph-based methods.

• Algebraic constructions of LDPC codes are mainly based on finite fields, finite geometries, and combinatorial designs.
• Algebraic constructions, in general, result in mostly QC-LDPC codes, especially QC-LDPC codes whose parity-check matrices are arrays of circulant permutation matrices (CPMs) and/or zero matrices (ZMs).

• We refer to this type of QC-LDPC codes as codes with CPM-structure or CPM-QC-LDPC codes.

• QC-LDPC codes have advantages over other types of LDPC codes in hardware implementations of encoding and decoding.

• Encoding of a QC-LDPC code can be efficiently implemented using simple shift registers.
• In hardware implementation of a QC-LDPC decoder, the quasi-cyclic structure of the code simplifies the wire routing for message passing.

• Well designed QC-LDPC codes perform as well as any other types of LDPC codes in the waterfall region.

• All these advantages inevitably will make QC-LDPC codes the mainstream LDPC codes for future applications in communication and storage systems.

• Algebraic LDPC codes in general have lower error-floor and their decoding converges faster than graph-theoretic-based LDPC codes.
IV. A Very Low Error-Floor RS-Based QC-LDPC Code

- Let α be a primitive element of the field $\text{GF}(2^7) = \{0, 1, \alpha, \alpha^2, \ldots, \alpha^{126}\}$ which consist of 128 elements.

- For the following 6x127 matrix over $\text{GF}(2^7)$:

$$B = \begin{bmatrix}
1 & \alpha & \alpha^2 & \ldots & \alpha^{126} \\
1 & \alpha^2 & (\alpha^2)^2 & \ldots & (\alpha^2)^{126} \\
1 & \alpha^3 & (\alpha^3)^2 & \ldots & (\alpha^3)^{126} \\
1 & \alpha^4 & (\alpha^4)^2 & \ldots & (\alpha^4)^{126} \\
1 & \alpha^5 & (\alpha^5)^2 & \ldots & (\alpha^5)^{126} \\
1 & \alpha^6 & (\alpha^6)^2 & \ldots & (\alpha^6)^{126}
\end{bmatrix}$$
The base matrix B is the conventional parity-check matrix of a cyclic $(127, 121)$ Reed-Solomon code over GF(2^7) whose generator polynomial has α, α^2, α^3, α^4, α^5, α^6 as roots.

Dispersing each entry in B by a 127×127 CPM, we obtain a 127×127 array H of CPMs of size 127×127.

H is a 762×16129 matrix with column and row weight 6 and 127, respectively. The rank of this matrix is 757. H has 5 redundant rows.

The null space of H gives a $(6, 127)$-regular $(16129, 15372)$ QC-LDPC code C with rate 0.953.
• The Tanner graph \mathcal{G} of the code C has girth 6 and each variable node of \mathcal{G} has a large degree of connectivity.

• \mathcal{G} has no small trapping set with size smaller than 11.

• With 50 iterations of the MSA, the code achieves a bit-error rate (BER) of 10^{-15} and a block-error rate (BLER) of almost 10^{-12} without visible error-floors.

• The bit and block error performances of this QC-LDPC code decoded with 5, 10, 50 iterations of the min-sum algorithm (MSA) with a scaling factor 0.75 are shown in Fig.1 (computed with an FPGA decoder).
Figure 1: Performances of the (16129,15372) QC-LDPC code calculated by an FPGA decoder.
V. Important Decoder Implementation Issues

- Number of logic gates (or number of message processing units);
- Number of wires connecting the message processing units;
- Memory requirement;
- Power consumption;
- Decoding latency.
VI. Conclusion

• To construct LDPC codes with good waterfall error performance and very low error-floor, algebraic construction is the way to go.

• A solution to the decoder implementation is the Merry-Go-Round decoder architecture.

• This presentation is simply an academic point of view.
Thank you!