Is 3D NAND a Disruptive Technology for Flash Storage?

Erich F. Haratsch
Scaling Challenges for Planar NAND

- Planar NAND is hitting physical limits at about the 1z nm node: The cell size cannot be reduced much further.
- 3D NAND relaxes the cell dimensions and adds additional layers in the vertical direction.
- 3D NAND appears to be the only viable option to increase densities for the next 5-10 years until a better non-volatile mass storage technology emerges.
Challenges of 3D NAND

- In principal, 3D NAND suffers from the same impairments as planar NAND:
 - Cell wear due to program/erase cycling, program disturb, read disturb, high and low temperature retention, cell-to-cell coupling.
 - The impact of some of these impairments is reduced compared to planar NAND due to the relaxed cell dimensions.

- In addition, 3D NAND suffers from:
 - Coupling in the vertical direction.
 - Yield challenges, since dozens of vertical layers are grouped together.
3D NAND Impact on Controllers

- How different is 3D NAND compared to planar NAND?
 - Cell-array architecture: Page, block and plane sizes and structure
 - Program and read algorithms
 - Error characteristics and ECC requirements
- What are the characteristics of cell-to-cell coupling?
- What are the yield characteristics?
Need for LDPC-Enabled Controllers?

- NAND vendors can leverage the error correction power of LDPC-based ECC to:
 - Relax the physical dimensions and other cell parameters while maintaining the same or better endurance and reliability characteristics than planar NAND.
 - Achieve the required endurance and reliability targets for high-capacity (TLC) and high-endurance applications.
- As flash vendors increase 3D NAND densities by adding more vertical layers, increasing the number of levels per cell (TLC) and shrinking physical cell sizes, the need for LDPC-enabled controllers will increase further.
Is 3D NAND a Disruptive Technology?

- **Yes for the flash storage industry:**
 - 3D NAND required the development of new cell-array architectures and requires significant investments in manufacturing.
 - 3D NAND opens up a new scaling path to increase capacities for the next 5-10 years.

- **For the controller, it depends on:**
 - The cell-array architecture, program and read algorithms, and error mechanisms of the 3D NAND device.
 - The flexibility of the controller architecture to deal with features of the 3D NAND device that are different from planar NAND.