Next Generation Architecture for NVM Express SSD

Dan Mahoney
CEO
Fastor Systems
NVMExpress Key Characteristics

- Highest performance, lowest latency SSD interface protocol today
- Architected from ground up for NVM scaling from client to enterprise.
- Large number of parallel commands
- Wide queuing interface
- This protocol begs for unconstrained access to the Flash media
Essential SSD Key Operations

Host Logical Block Addresses

SSD Firmware

Flash Translation Layer

Wear Leveling

Garbage Collection

Nand Devices w/ Multiple Die
Typical SSD Controller

- PCIe Interface
- CPU - 1
- CPU - N
- Buffer
- Flash Controller
- DMA
- Nand Devices
Fabric Based SSD Architecture

- Utilizes a Non-Blocking Fabric to connect:
 - Multiple Channel Controllers
 - PCIe Interface
 - Memory Controller
 - Embedded CPU

- Exploits PCIe high performance low latency protocol to connect to array of Flash devices

- Permits Concurrent Data Flow across all modules
Fabric Based SSD Architecture

- Non-Blocking Fabric coupled to Individual Channel Controllers
A Highly Scalable Architecture

The data plane (i.e. Fabrics) Scales Independently of the Control Plane

Today’s fabric-based architecture: 12TB & 3.2M IOPS
The architecture of the future: 100TB & 25M IOPS!
Command Processing

- Fetch command and data from host
- Assemble internal datagram with Fabric header
Message Based Architecture

- Messages sent to Channel Controllers for Data Movement

- Copy Page Data from Channel 1 to Channel 2
- Copy Complete
- Send completion status to eCPU
Packet Forwarding

- Schedule Packets for Ingress into Fabric
- Forward to Destination
Packet Completions

- After packets are processed by channel controller, completions are sent to eCPU
- Permits Asynchronous completions
Concurrency Eliminates the Main Source of Latency

Latency

Random, un-cached (4k blocks)

- **Flash**
 - Fabric-based Architecture
 - PCIe
 - DMA (Setup and Teardown)
 - Typical & Worst Case: 85µS
 - Optimal: 130-280µS
 - Typical & Worst Case: 130-1080µS

- **Legacy Architectures**
 - PCIe
 - DMA (Setup and Teardown)
 - Typical: 130-1080µS

8/20/2014
Determinism Enables SDS

Unmatched Throughput & Latency

NEXTFlash Fabric™

Enabling SDS

- Storage QoS
- VM storage SLAs
- Application Optimization
- IOPs Carving
- Capacity Carving
Legacy vs Fabric Summary

Scaling by Controller Replication

- Islands of Flash – no global wear leveling
- Control resources must be replicated to scale the Flash
- Commingled control and data planes make the controller a choke point for data movements

Fabric Operated

- Saturate Interface
- Deterministic
- Highly Scalable
- SDS enablement
- Low TCO
Comparison of Write Overhead

Controller-Centric
1. ID DMA channel
2. CPU issues start address
3. CPU hand over end address
4. CPU send start command to DMA controller
5. DMA transmits from memory to Flash

Fabric-Based
1. Fire and forget!

Five steps – CPU cycles – compared to one
Advantages of Fabric Based Architecture

- Allows asynchronous movement of datagrams within the SSD – Concurrency!
- No Setup/Tear down of DMA channels
- Provide QoS within the SSD
- Separation of control and data planes offers scalable and deterministic performance
- Agnostic regarding interface and storage media – aligned with emerging technologies such as MRAM, PCM, etc.
This interface-agnostic architecture can support higher speed interfaces – i.e. HMC.

This would allow large scale Flash modules that look like DRAM to the host CPU.

HMC Flash modules attached to an HMC-enabled processor could ultimately scale to:

- 10X Bandwidth improvement with 2.5X or greater latency reduction compared to state of the art Flash-based solutions.
- Potential appliance capacity of 25% of an HDD-based appliance with 100X the bandwidth.
HMC Attached Flash

Blue arrows signify control plane traffic if separate from data plane traffic
Conclusion

- Better controllers are good, but if they remain in the SSD’s data path, they remain a bottleneck.
- Emerging storage software solutions will all benefit from faster, more deterministic, more scalable storage hardware.