Forward-Looking Statement

During our presentation today we may make forward-looking statements.

Any statement that refers to expectations, projections or other characterizations of future events or circumstances is a forward-looking statement, including those relating to revenue, unit sales, pricing, market positions, market growth, product sales, industry trends, expenses, gross margin or other financial measures, capital investments, cash flow, use of cash, customer relationships and partnerships, strategic investments and other strategic transactions, competition and competitive advantages, future memory and other technologies, production capacity, technology transitions and future products.

Actual results may differ materially from those expressed in these forward-looking statements including due to the factors detailed under the caption “Risk Factors” and elsewhere in the documents we file from time-to-time with the SEC, including our annual and quarterly reports.

We undertake no obligation to update these forward-looking statements, which speak only as of Aug 13, 2013.
SanDisk NAND Memory Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-NAND</td>
<td>19nm</td>
<td>1Y</td>
<td>1Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X2,X3</td>
<td>X2,X3</td>
<td>X2,X3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiCS (3D-NAND)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BiCS Pilot → BiCS Production

Note: Box denotes start of meaningful production for the lead products

19nm lowest cost technology in production
1Y NAND ramp-up in 2H-13
1Z NAND feasibility established
BiCS (3D-NAND) targeted to provide meaningful cost reduction versus 1Z

Lithography and Device Performance Considerations

Cell X, nm

Cell Y, nm

24nm

19nm

1Y

1Z

LITHO

Cell to cell interaction

Note: Figure not to scale

Scaling 24nm → 19nm: Optimize available lithography and X dimension Cell to Cell solution

Scaling 19nm → 1Y: Implement Cell to Cell solution in Y dimension

Scaling 1Y → 1Z: Optimize both X, Y dimensions for available finer lithography

We believe this scaling path gives us the lowest cost and a clear technology leadership

BiCS 3D-NAND

BiCS delivers smallest chip area of any published 3D-NAND

BiCS U-shaped NAND string enables maximum array efficiency
– Leverages existing NAND Fab infrastructure. Does not need EUV.
– Scaling achieved by increasing number of layers

Good progress in BiCS development

Challenges for all 3D-NAND manufacturing
– NAND poly TFT devices, a first in volume manufacturing
– High aspect ratio etching of large number of layers and its control
– High volume manufacturing requires new etching equipment and techniques for scaling to high number of layers

Note: Diagram not to scale
Leadership Expected to Continue into 3D NAND

Competitor 3D NAND Technology

SanDisk/Toshiba BiCS

SanDisk/Toshiba 1Z

* Estimates based on analysis of published 3D-NAND architectures
Key Takeaways

We see NAND scaling through 1Z: Ensures cost leadership

BiCS 3D-NAND will provide meaningful cost reduction versus 1Z NAND

3-D ReRAM research ongoing. Potential scaling to sub-10nm. Successor to NAND into the next decade

2D-NAND and 3D technologies will coexist this decade

Our conclusions on 3D-NAND remain the same as discussed on 2013 Investor Day