Removing the I/O Bottleneck in Enterprise Storage

WALTER AMSLER, SENIOR DIRECTOR
HITACHI DATA SYSTEMS

AUGUST 2013
Agenda

- Enterprise Storage
 - Requirements and Characteristics
 - Reengineering for Flash – removing I/O bottlenecks

- Measuring Performance
 - Application Performance Metrics vs Synthetic Benchmarks Numbers

- Summary
Requirements for Storage Systems

EFFECTIVELY ADDRESSING TECHNOLOGY AND BUSINESS CHALLENGES

- What Customers are demanding
 - Reduce cost, optimize service-level delivery via scale-up, dynamic provisioning and tiering across different media types
 - Management abstraction to enable ease of use, speed and automation
 - 24x7xforever application availability, eliminate planned and unplanned outages
 - Reliability, Availability Serviceability (RAS)

- Recent Trends in High-End Storage
 - Storage Subsystems are designed for the Virtual data center
 - Storage Infrastructure is transformed in Storage Services
 - Exploitation of loosely coupled vs tightly coupled Architectures
Characterizing Storage systems

ANOTHER FORM OF RAS: REDUNDANCY, ARCHITECTURE, SCALABILITY

- Storage Architectures and design – different value propositions
 - Modular Architecture vs Enterprise Architecture
 - Component/Site Redundancy

- Performance
 - Time is Money – must cope with peak demands and satisfy strict SLA’s

- Functionality
 - Virtualisation
 - Dynamic Tiering
 - In-System Snapshots and Clones
 - 2DC and 3DC Sync and Asynchronous Replication
 - Rich GUI/CLI Management Capabilities – Ease of Use
Modular vs Enterprise Architecture

BALANCING COST, SCALABILITY, PERFORMANCE AND CAPACITY

Modular-Architecture

Enterprise-Architecture

Applications

Connectivity

Processors

Cache Memory

Backend

Storage Media Types

SSD
FC / SAS
SATA

Storage Pool

Storage Array

Connectivity

Processors

Cache Memory

Backend
Modular storage growth – Scale-Out

ADD MORE OF THE SAME – BUT BEWARE OF ISLANDS

Applications

Connectivity

Processors

Cache Memory

Backend

Storage Media Types
- SSD
- FC / SAS
- SATA

Storage Array

Connectivity

Processors

Cache Memory

Backend

Storage Pool

Loosely coupled Architecture
Enterprise storage growth – Scale-Up

EXPAND CAPACITY, CONNECTIVITY AND PROCESSING POWER

Applications

Connectivity

Processors

Cache Memory

Backend

Storage Media Types

SSD

FC / SAS

SATA

Storage Pool

Storage Pool

Storage Pool

Storage Pool

Tightly coupled Architecture
When things go wrong

FAILURE IMPACT - GOOD ENOUGH VS BULLET PROOF

- Availability depends on failure domains and the choice of component/site redundancy options
 - Bulletproof storage array: http://www.youtube.com/watch?v=Gnjb1WVkhmU
I/O Bottleneck in Enterprise Storage

BUILT FOR FLASH FROM THE GROUND UP VS RE-ENGINEERED

- Traditional Storage Arrays
 - originally designed for hundreds, then thousands of HDD’s
 - Ever larger DRAM Cache and sophisticated Algorithms mitigate/hide HDD performance characteristics
 - Works great for sequential read/write
 - Works very well for Random I/O with good Locality of reference

- The IO Gap
 - Moore’s Law - processor speed has increased dramatically
 - HDD Speed (Seek and RPM) has virtually stayed the same
 - server virtualization randomizes I/O, LOR is lost, aka «I/O Blender»

- The Emergence of Flash demands a new approach
Read IO Operation; Cache Hits and Misses

Data found in cache = ‘Hit’

Performance is media independent

No data found = ‘Miss’

S3 Sweet Spot: SSD vs HDD = 10 : 1
30+ fundamental software changes to turbo-charge performance with Flash
- New “express” I/O processing
- New Cache Slot Allocation method
- Reduced ucode Overhead and path length

Significant performance impacts
- Up to 65% reduction in response time
- Up to 4X Random IO scalability

Non-disruptive installation and transparent to current applications
Flash Memory Summit 2013
Santa Clara, CA

Flash Acceleration Impact for all flash array

145 PATENTS RELATED TO HITACHI FLASH TECHNOLOGY

- Backend Codepath reduction, logic and ASIC optimization
 - Version 1: Basic Design for HDD – non optimized
 - Version 2: BE/FE Job Integration, Cache Buffer Slot Management
 - Version 3: use DXBF, avoid CTL to CTL communication Improve CPU L1 Cache Hit Rate for Instructions

![Graph showing read processing time and throughput for different versions of HUS VM V01, V02, and V03.]

- Throughput (KIOPS): 240KIOPS, 500KIOPS, 1000KIOPS
- Read Processing Time (%): HUS VM V01, HUS VM V02, HUS VM V03
Latency and what does it really mean

MEASURING PERFORMANCE - RELEVANCE TO YOUR BUSINESS

- **Vendor Provided Measurement Data**
 - Objective is to show «champion numbers»
 - Customers need to have a complete understanding of what was measured and how, for example:
 - 80 usec Latency: single 512Byte Block Read measured at Fibre Channel Port with a Fibre Channel Analyzer
 - 1 Million IOPS: 4KB Random Reads measured by IOMETER
 - Interesting, but not relevant from an application perspective

- **Need a different approach**
 - Include and consider all the different technology layers of entire platform
 - Example: Oracle Database Platform Architecture
Oracle Database Platform Architecture

Application Network (IP-based)
Bandwidth, latency during remote database mirroring (sync, async) due to switches and sql*net and tcp/ip stack (frame size, ...).

Oracle Database
Different versions, patches and options, about hundred configuration parameters.

Volume & File Management
Different volume managers (VxVM, ASM) and file systems (UFS, VxFS, ext3, JFS, ZFS, raw devices), different I/O methods (async, direct), a lot of config parameters (#LUNS, queue depth, max i/o unit), software striping and/or mirroring, multipathing.

Storage Network (IB-, FC- or IP-based)
Bandwidth, latency during remote storage mirroring (sync, async) due to switches, hubs and distance.

Server & Operating System
Different server systems, processors and CPU architectures, (x86, IA-64, UltraSparc, SPARC64, Power), #cores, multithreading, main memory, bus architecture. Different operating systems and patches, over hundred configuration parameters, virtualization of resources.

Storage System
Different storage systems, storage tiers and storage technology: spindle count and speed, RAID management, cache management, server interface technology, storage system options like remote copy, hardware striping and/or mirroring, virtualization of resources.
Measuring Oracle Application Performance

Measuring Hardware

Measuring complex Application I/O or customer reality

Measuring Server and Storage and «Mindless» IO
Benchware Approach

Library of Oracle benchmark tests - implemented in PL/SQL, Java and SQL

<table>
<thead>
<tr>
<th>CPU Performance</th>
<th>OLTP systems</th>
<th>DWH systems</th>
<th>Metrics Efficiency</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-bound Oracle operations</td>
<td>★★</td>
<td>★★</td>
<td>throughput</td>
<td>[ops]</td>
</tr>
<tr>
<td>All operations in Level 1, 2, 3 CPU cache</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Performance</th>
<th>OLTP systems</th>
<th>DWH systems</th>
<th>Metrics Efficiency</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-bound Oracle operations</td>
<td>★★</td>
<td>★★</td>
<td>throughput</td>
<td>[bps] [tps] [rps]</td>
</tr>
<tr>
<td>All operations in RAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Database Performance</th>
<th>OLTP systems</th>
<th>DWH systems</th>
<th>Metrics Efficiency</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed resource usage: CPU, memory, storage</td>
<td>★★★</td>
<td>★★</td>
<td>throughput</td>
<td>[bps] [tps] [rps]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage Performance</th>
<th>OLTP systems</th>
<th>DWH systems</th>
<th>Metrics Efficiency</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O-bound Oracle operations</td>
<td>★★</td>
<td>★★★</td>
<td>speed</td>
<td>[rps] [tps] [qpm]</td>
</tr>
</tbody>
</table>

• sequential I/O			throughput service time virtualization tiering	[MBps] [GBps] [iops] [ms]	

1 MByte, read	write				

• random I/O				

32 block size, read	write			

[s] seconds
[ms] milli seconds \((10^{-3})\)
[us] micro seconds \((10^{-6})\)
[ns] nano seconds \((10^{-9})\)

[bps] buffers per second
[rps] rows per second
[tps] transactions per second
[ops] operations per second

[MBps] mega bytes per second
[GBps] giga bytes per second
[iops] i/o operations per second
[qpm] queries per minute

[less important]
[important]
[very important]
Measuring Datawarehouse Workload

SEQUENTIAL READ, MULTIPLE PROCESSES – TYPICAL FOR DWH

Number at measuring point: Avg service time within Oracle for 1 MByte I/O read request (128 x 8 kByte)

Throughput in [MBps]

Degree of parallelism (dop)
Measuring OLTP Workload

8KB RANDOM READ; 100% CACHE MISS - TYPICAL FOR OLTP

Number at measuring point:
Avg service time within Oracle for 8 kByte single block random read

HDS VSP with 16 FMDs
- single instance
- multi instance
What does it mean to your business?

KEY PERFORMANCE METRICS LEAD TO SERVICE LEVEL AGREEMENTS

- The measured server/storage platform will deliver:
 - 8GB/sec sequential Read throughput for your DWH
 - 250,000 8KB Random Reads with Zero Cache Hits for your OLTP application with a Response Time of less than 3 Milliseconds

- Note: Oracle Measurements for Random Read IO
 - Oracle currently does not understand «Microseconds»
 - Response Time for Random Read is reported in Milliseconds, and data is rounded e.g. 0 MS or 1 MS

- R/T for high Random Read I/O Rates generally at 1-4 MS
 - This also applies to All Flash Appliances/Arrays
Summary

- Enterprise Storage today has a lot to offer
 - RAS: Reliability, Availability, Serviceability
 - Superior Performance
 - Seamless Scale-Up Architecture

- Flash Storage Exploitation
 - Value of Re-engineering equals «Built from scratch»
 - In addition you get the functionality and EoU you need

- Performance and Latency Claims
 - Must understand what is being measured and how
 - The key is the mileage you get for your application!
Questions and discussion
Thank you