The Nibbles and Bits of SSD Data Integrity

Earl T. Cohen
Flash Components Division
LSI Corporation
What is Data Integrity?

1. Maintaining and assuring the accuracy and consistency of data over its entire life-cycle.

2. Don’t “foul” up the data!
 Earl
Aspects of Data Integrity

• Knowing there was an error!
 • End-To-End Integrity Checking
 • Avoid silent data corruption, misdirected writes, …
 • Internal ECC/parity, address corruption checks, …
 • Issues here common to all storage devices

• Preventing/Correcting Errors
 • Robust Error Correction – Beat the UBER
 • But watch out for performance suffering!
 • Sometimes the cost of getting your data is high…

• This talk: preventing/correcting errors
Why ECC – Where’s My Data?

What we wrote...

Nominal LSB Vref

0V

11

01

00

10

What we find later...

P/E Cycling

Retention!!

Read Disturb

Program Disturb

???
What Your Data Really Looks Like

Distribution of Charge for an MLC State over P/E Cycles

Frequency (Number of Samples) vs. Voltage Reference

0 Cycles, 501 Cycles, 1501 Cycles, 2501 Cycles, 3501 Cycles, 4501 Cycles, 5501 Cycles
Read Retry – Finding Your Data!

• Adjust Vref until you can recover data
 • Naïve approach – linear search
 • Sophisticated approaches…
 • Tracking, interpolation, …

• How long will it take you to find your data?

Try all possible Vrefs…
LDPC – Coding Headroom

• LDPC is an iterative coding technique
 • More run-time ⇒ better correction
 • But lower throughput
 • More information (read retry) ⇒ better correction
 • BCH: binary use of individual read retries
 • LDPC: soft-decision use of all read retry information

• Optimize for throughput
 • But be able to use coding headroom when needed
What Coding Headroom Looks Like

![Graph showing coding headroom](image-url)

- **LDPC hard**
- **BCH, N=1kB, t=40**
- **LDPC soft**

Hard/soft gain
LDPC – More Efficient Read Retry

• Time to data is a key metric
 • How many read retries are required to “find” data?
 • Soft-decision decoding using information from read retries can reduce time to data

Convert small number of read retries to LLR (Log Likelihood Ratio)
So When *Do We Need Strong ECC*?

• That depends on …
 • How often you want to read retry
 • And performance consequences thereof
 • Pay one Tr per read retry!
 • But it may let you find a point with fewer errors

• For a good fraction of the P/E cycle lifetime
 • We *don’t* need very strong ECC
 • But late in life, read retry may be required!
 • Is there cost in having ECC constant over lifetime?
When Do You Need (Strong) ECC?
How Much ECC and When?

1KB BCH Correction Strength vs. RBER

- 3K P/E Cycle
- 1.5K P/E Cycle
- 3% Space
The Power of 3%

Fullness, Write-Amp, and Effect of 3% Extra OP on P/E Cycles

- Write Amplification
- 3% Capacity Boost Impact

Percentage P/E Cycle Gain for 3% Extra OP vs. Percent Full
You Want the 3%!
FTL Implications...

- Goal: maximize use of flash page for user data
 - User Data vs. ECC changes over lifetime
 - User Data vs. ECC changes for …
 - Stronger and weaker blocks/pages/…
- Problem: typical 4KB write doesn’t pack nicely into flash pages any more…
 - User portion of flash page size “borrows” some of the spare normally used for ECC
Mapping Scheme for VFTLs (FMS 2012)

- How to map the LBA to data location in flash?
 - Any access must read an integer # of ECC units
 - Only need to point to first one and how many

```
LBA[m:u]  |  FTL  |  ECC Unit Address  |  & Span in ECC units |  NAND Page |  NAND Page
```

Flash Memory Summit 2013
Santa Clara, CA
Mapping Scheme for VFTLs with Variable User Flash Page Size

- Data spans any number of ECC units
- Number of ECC units per page and/or amount of data per ECC unit can vary

![Diagram showing the mapping scheme for VFTLs with variable user flash page size.](image)
Summary

• NAND flash error rates continue to increase while datasheet lifetimes decrease
• ECC needs of NAND vary over lifetime
• Design to take advantage of this:
 • User powerful coding with headroom
 • Design your FTL to optimize for this variability
• Maintain data integrity while maximizing throughput and performance
LSI is Accelerating Flash Storage Innovation

- **Attend the LSI keynote on Thursday 8/15 @ 11:30am**
 - *Optimizing Flash Controller Technology for Next-Gen Flash*
 Greg Huff, LSI Senior Vice President and CTO

- **Visit us at booth #402**
 - Experience new LSI flash storage innovations
 - See live demos of LSI SandForce Driven SSDs
 - Enter to win SandForce Driven SSDs