NAND Flash PHY Units for Advanced SSD Design

Hanan Weingarten, CTO, DensBits Technologies
Paradigm change

- 2-Plane NAND Technology is hitting a wall:
 - Sub 1xnm devices suffer from pronounced reliability issues
 - Simple ECC alone is no longer sufficient
 - Handling reliability issues requires a myriad of new techniques – a Memory Modem™

- Next generation products will need to be much more complex or deliver very limited reliability
Paradigm change

• 2-Plane NAND Technology is hitting a wall:
 • Sub 1xnm devices suffer from pronounced reliability issues
 • Simple ECC alone is no longer sufficient
 • Handling reliability issues requires a myriad of new techniques – a Memory Modem™

• Next generation products will need to be much more complex or deliver very limited reliability
Outline

• FTL and PHY Separation?
• What does the Memory Modem™ Do?
• What does the FTL Do?
• Modular Approach
• Summary
Why separate FTL and PHY-Memory Modem™

• **Time to Market:**
 • NAND Flash from different vendors require very different techniques – with different overheads. Yet, FTL may remain the same
 • Different applications using same NAND need only FTL changes and no Memory Modem™ change

• **Engineering Resources Management:**
 • Completely different type of SW expertise
 • Modular design
PHY-Memory Modem™ Integration With FTL

- Memory Modem on Controller:
 - Clear NAND Constrained Design
 - FTL specific adaptation of PHY
 - Resource Sharing
Conventional FTL vs. Separated

Standard FLASH Controller

Separated FTL - PHY approach

Controller

FTL

FTL

Controller

Virtual NAND Interface

Memory Modem™

NAND Interface

NAND Interface
FTL Point of View in a Separated System

- **Virtual NAND:**
 - Reliable
 - Virtual Block not necessarily same size as Physical block
 - Virtual page size may be larger than a single die page
What does the Memory Modem™ do? (1)

- Handle all reliability issues due to:
 - Endurance
 - Retention
 - Read disturbs
 - Sudden power loss
 - Different block types
 - …

- Optimize raw performance for given NAND Flash type and state:
 - Programming Speeds
 - Read Speeds
What does the Memory Modem™ do? (2)

• How does it do it:
 • Powerful, configurable, low power ECC (not BCH nor LPDC) which performs both hard and soft decoding
 • DSP
 • Low Level Management: Data allocation across NAND blocks and dies to optimize reliability
• Near optimal reliability – close to theoretical bound
• Performs both hard and soft decoding
 • Hard decoding determines the joint reliability – performance point
 • Soft decoding performance depends on sampling speeds
• Optimal and high performance hard decoding
• Low power
• Configurable: Code size, code rate, code capabilities
Memory Modem™ - DSP

- Tracks block state
- Modifies NAND trim parameters according to block state to optimize read results
- Modifies NAND trim parameters during programming to optimize reliability and performance (tProg)
- Detect different disturb factors to inform FTL:
 - Stale blocks
 - Read Disturbs
 - …
- Ungraceful power-downs:
 - Detect
 - Recover Data
Memory Modem™ - Low Level Management (1)

- Data allocation within blocks and dies can reduce the effect of worst case pages:
 - Example: TLC NAND Flash has 3 types of pages with different BERs: MSB, CSB & LSB (Lower, Middle, Upper)
 - Interleaving between MSB and LSB pages averages BERs
 - Alternatively, variable rate coding may be used

![Diagram of Memory Modem™](image)

Flash Memory Summit 2013
Santa Clara, CA
To support interleaving or coupling between pages of different types, buffering may be required:

Example: Buffering some of the data into SLC to allow striping / coupling between MSB pages of first rows with LSB pages of the last rows.
Memory Modem™ - Low Level Management (3)

• Interleaving / Coupling / Variable rate coding schemes:
 • Highly dependent on target devices
 • Dynamic, changing depending on Flash state
 • Choice may affect buffering

• Handled by Memory-Modem, without (or hardly) involving FTL:
 • Buffering should be hidden
 • FTL is ignorant of the choice of data allocation scheme
 • Data allocation scheme may change to support different performance requirements
Memory Modem™ – Adaptive/Dynamic Behavior

- Memory modem™ dynamically tracks NAND Flash state and changes the following:
 - DSP Trim parameters during programming and reading
 - Codeword size, Codeword rates
 - Data allocation strategy: stripping, page coupling, variable rate coding
What Does the FTL Do? (1)

- Handle host interface
- Handle control data
- Data mapping
 - Performance optimized tables
 - De-duplication
 - Compression
 - SLC / MLC / TLC block mapping
- Encryption
• High level integrity handling:
 • Wear leveling
 • Bad block handling
 • Power-down recovery – control data
 • Scrubbing
 • …
A Modular Approach

- Each Memory Modem™ handles a set of NAND channels
- Each Module may be customizable:
 - Throughput
 - Latency
- Scalable through instantiation:
 - Higher throughputs
 - Higher IOPs
 - Higher capacities
 - Same module may be used for price sensitive embedded systems as well as enterprise SSD
Memory Modem™ Architecture (1)

- ECC Encoder
 - Streaming data operation
- ECC Decoder
 - Hard and Soft decoding
 - High performance:
 - Low latency
- DSP
 - Flexible: adaptable per Flash device
 - Mainly SW
 - Full HW acceleration of data processing
Memory Modem™ Architecture (2)

- **NAND Unit**
 - High performance
 - High NAND channel utilization
 - Flexible: configurable per Flash device
 - Configurable # of channels and # of dies per channel

- **Control Interface FTL to PHY:**
 - PHY is slave to FTL level
 - Commands are sent from FTL to PHY
 - PHY sends responses to FTL
 - Large number of outstanding commands
• Interface required to support different types of messages:
 • Block refresh required
 • Read Disturb, High Retention, High BER Indication – PHY informs FTL and request block refresh
 • Recovery mode
 • PHY may indicate that entire drive has undergone retention and should be refreshed entirely
• S.M.A.R.T
PHY – FTL Interface (2)

- Power down indications:
 - Regrets messages
 - Enables Power / Performance Optimization
 - Optimization of boot time

- Internal PHY NCQ:
 - FTL handles operations at PHY Module level
PHY Architecture Customization

Continued

• PHY Module Customization:
 • Random Read Requirements ➔ Number of CPUs
 • Sequential Read Requirements ➔ Number of Channels
 • (system / die) Capacity
 (system / die) write bandwidth ➔ Max number of devices per Channel
 Channel capability
 • Datapath BW
 Read performance ➔ Encoder/Decoder
 Recovery performance end of life
 • Ungraceful Power Down handling
 Write flow ➔ Buffer Memory Size
 Recovery flow

• Over all PHY Performance ➔ number of PHY modules
Summary

• New generation of NAND Flash devices require a strong PHY
 • PHY = ECC + DSP + low level management + Flash interface

• FTL-PHY separation modular approach allows scalability and easy adaptation to different applications