Using LDPC Codes in SSD
--- Challenges and Solutions

Tong Zhang
Electrical, Computer and Systems Engineering Department
Rensselaer Polytechnic Institute
Google/Bing: “tong rpi”
Email: tong.zhang@ieee.org
Introduction and Motivation

Cheaper flash

Floating-Gate Transistor

20nm

Floating-Gate Transistor

Less and less reliable

More and more powerful

System & Controller

Stronger Error Correction Codes
Introduction and Motivation

LDPC codes for SSD

Hard disk drive
LDPC for SSDs: Challenges

- Error floor of LDPC codes
- Memory read latency overhead
- Low-cost, high-speed LDPC decoder implementation
Error Floor of LDPC Codes

- Nature of iterative codes
- Impossible to eliminate error floor 😞
- Sufficient coding gain in practically interested frame error rate region

→ Estimate LDPC code error floor

→ Construct LDPC code with sufficiently low error floor
Solutions

❖ General-purpose Parallel Computing Facility

❖ A software tool set for LDPC code error floor estimation

❖ Fully tested by running on 8192 cores in a super computer cluster

❖ Many algorithms/techniques to improve both accuracy and speed

❖ Estimate the error floor of a 16k-bit LDPC code in just one day

A tool set to construct LDPC codes with low error floor
Verification

Rate-0.625, 2400-bit
Performance of Our LDPC Codes (1)
Performance of Our LDPC Codes (2)
Performance of Our LDPC Codes (3)
LDPC for SSDs: Challenges

- Estimation of LDPC code error floor
 - SOLVED

- Construction of low-error-floor LDPC codes
 - SOLVED

? Memory read latency overhead
Memory Read Latency

- Longer memory sensing latency
- Longer data transfer latency
- Longer NAND flash memory read latency

Controller

LDPC Code

NAND Flash

NAND Flash

NAND Flash
Progressive Soft-Decision Memory Sensing

- Hard-decision memory sensing
 - LDPC code decoding
 - Yes: Success
 - Yes: Increase the success rate
 - No: No
 - No: No
 - No: No
 - No: Failure
 - Yes: Success
 - No: Higher precision memory sensing

A set of cross-layer design solutions

Reduce data transfer latency

Flash-to-controller data transfer
Reduce Read Latency Overhead

- Non-uniform quantization memory sensing

![Diagram showing reducing read latency overhead through non-uniform quantization memory sensing.](image)
Non-uniform quantization memory sensing

Memory cell threshold distribution

Reduce Flash-Controller Data Transfer Latency
One Step Further

Progressive soft-decision sensing

1st step: 4-level hard-decision sensing

2nd step: 7-level soft-decision sensing

1st step sensing results

Reduce 2nd step sensing result coding overhead
Zoned Entropy Coding

Progressive soft-decision sensing ➞ zoned entropy coding

Four entropy coding zones

Threshold voltage
Probabilities and codewords of 2nd-step soft-decision sensing results.

<table>
<thead>
<tr>
<th>Level index</th>
<th>Probability</th>
<th>Fixed-length coding</th>
<th>Entropy coding</th>
<th>Zoned Entropy Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.2397</td>
<td>111</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>0.0255</td>
<td>110</td>
<td>000000</td>
<td>00</td>
</tr>
<tr>
<td>III</td>
<td>0.2255</td>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>IV</td>
<td>0.0263</td>
<td>000</td>
<td>00001</td>
<td>01</td>
</tr>
<tr>
<td>V</td>
<td>0.2245</td>
<td>001</td>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>VI</td>
<td>0.027</td>
<td>011</td>
<td>0001</td>
<td>00</td>
</tr>
<tr>
<td>VII</td>
<td>0.2315</td>
<td>010</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

20.4% reduction of transfer latency
64.8% reduction of transfer latency
LDPC for SSDs: Challenges & Solutions

Error floor of LDPC codes

- A tool set for LDPC code error floor estimation
- A tool set for low-error-floor LDPC code construction

Memory read latency overhead

- A set of cross-layer design solutions to
 1. Increase decoding success rate at lower sensing precision
 2. Reduce soft-sensing data transfer latency