19nm 112.8mm² 64Gb Multi-level Flash Memory with 400Mb/s/pin 1.8V Toggle Mode Interface

Noboru Shibata
Memory Design Department
Toshiba Corporation
Outline

- Introduction to 19nm 64 Gbit MLC NAND (400 Mb/s/pin interface)
- Chip Architecture for Small Die Size
- MLC Programs Techniques
- New Features (Read-Latency Reduction)
- Summary of Key Features
- Conclusion
Outline

- Introduction
 - Chip Architecture for Small Die Size
 - MLC Programs Techniques
 - New Features (Read-Latency Reduction)
 - Summary of Key Features
 - Conclusion
Since first 160nm 1Gb MLC was commercially introduced in 2001, Memory Density has expanded by over 100 times.
Comparisons of first 1Gb MLC and latest 64Gb MLC

<table>
<thead>
<tr>
<th></th>
<th>160nm</th>
<th>one-ninth</th>
<th>19nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>1Gb</td>
<td>64 times</td>
<td>64Gb</td>
</tr>
<tr>
<td>Die Size</td>
<td>137mm2</td>
<td></td>
<td>112.8mm2</td>
</tr>
<tr>
<td>Mb/mm2</td>
<td>7.5</td>
<td>80 times</td>
<td>581</td>
</tr>
<tr>
<td>Architecture</td>
<td>Conventional Even / Odd</td>
<td>All-Bit-Line(ABL)</td>
<td></td>
</tr>
<tr>
<td>SA configuration</td>
<td>Both Sided</td>
<td></td>
<td>Single Sided</td>
</tr>
<tr>
<td>Program unit</td>
<td>2kB (= 512B x 4Plane)</td>
<td>8 times</td>
<td>16kB (=16kB x 1Plane)</td>
</tr>
<tr>
<td>tProg</td>
<td>1.1ms</td>
<td></td>
<td>1.1ms</td>
</tr>
<tr>
<td>Prog. Perform.</td>
<td>1.9MB/s</td>
<td>8 times</td>
<td>15MB/s</td>
</tr>
<tr>
<td>Burst Cycle Time</td>
<td>20Mb/s/pin(50ns)</td>
<td>20 times</td>
<td>400Mb/s/pin(2.5ns)</td>
</tr>
<tr>
<td>Year</td>
<td>2001</td>
<td></td>
<td>2011</td>
</tr>
</tbody>
</table>
Comparisons of 3bit /cell and 2bit /cell

- Two different directions (3bit/cell and 2bit/cell)
 - 3bit/cell enables highest Mb/mm²
 - 2bit/cell offers better performance and reliability

Note: D# = # bits per cell
Outline

- Introduction

- **Chip Architecture for Small Die Size**
 - Single-Array Configuration
 - One Sided All-Bit-Line (ABL) Architecture
 - High Speed Toggle Mode Interface

- MLC Programs Techniques

- New Features (Read-Latency Reduction)

- Summary of Key Features

- Conclusion
Single Array Configuration

Conventional Evne / Odd Architecture

- 32Gb Cell Array
- 16kB-cells
- 8kB-Page

2-Plane array configuration

All-Bit-Line (ABL) Architecture

- 64Gb Cell Array
- 16kB-cells

Single array configuration ⇒ Small Die size
Two-Sided Sense Amp Architecture

- Half of SAs are placed on each side of the array due to complexity of SA layout.
One Sided ABL Architecture

- Same Metal pitch in SA as BL pitch
- Spacer patterning process

Conventional Two-sided SA

This work One-sided SA
Die Size Reduction

117.3mm² (100%) → 112.8mm² (94%) (fit into uSD)

- Peripheral Circuits: -25%
- Sense Amplifier: -30%
- Row Decoder
- Cell Array

Conventional Two-sided SA

This work One-sided SA
High Speed Toggle Mode Interface

Conventional
Two-sided sense amplifier

- Minimized signal delays
- Lower power consumption

This work
One-sided sense amplifier
400Mb/s/pin @ 1.8V high-speed toggle mode interface is achieved!
Introduction

Chip Architecture for Small Die Size

MLC Program Techniques
 • Bit-Line Bias Acceleration (BLBA)
 • BC-States-First Program Algorithm

New Features (Read-Latency Reduction)

Summary of Key Features

Conclusion
Bit-Line (BL) RC

24nm 64Gb D2

Bit-Line ~ 65,000 cells

19nm 64Gb D2

Bit-Line ~ 130,000 cells

- Cells connecting to one Bit-Line is doubled

 \[\Rightarrow \text{Larger Bit-Line (BL) RC} \]
Bit-Line Bias Acceleration (BLBA)

- **Acceleration Period**
 - Bit-Line Voltage:
 - "VBL+Vth"
 - "VBL"
 - Time:
 - "ON"
 - "OFF"

- **Sense Period**
 - Bit-Line Voltage:
 - "VBL+Vth"
 - "VBL+Vth"
 - Time:
 - "ON"
 - "OFF"

→ Bit-Line pre-charge time is reduced by 20%
Conventional-Program Algorithm

State “b” and “c” Programming voltage is “high”
BC-States-First Program Algorithm

Program pulse
WL Voltage
state “c” verify
State “b” verify
State “a” verify

→ “Program disturbs” and “cell-to-cell coupling effect” are suppressed
→ Bigger incremental step size can be applied
MLC Program Improvement

- High program throughput with high reliability

- All-Bit-Line architecture (ABL)
- Bit-Line Bias Acceleration (BLBA) (6%)
- BC-states-first program algorithm (8%)
- Air Gap technology reduces FG coupling effect and word line (WL) RC (10%)

Program throughput: 15MB/s (16kB)
tProg: 1.1ms
Introduction
Chip Architecture for Small Die Size
MLC Programs Techniques
New Features (Read-Latency Reduction)
Summary of Key Features
Conclusion
Program-Suspend Function

- Operation
 - Prog. Command
 - Read Command

- Cache Ready/Busy
 - Cache Busy

- True Ready/Busy
 - True Busy Prog.

- Internal operation (WL voltage)
 - Prog
 - P.V
 - Prog
 - P.V
 - Prog
 - P.V

- Any page within any block can be read
Read data shifted out while program resumes
- Same sequence as at Reset command.
- Program operation as well as read operation is available without any restrictions on address input
Erase-Suspend Function

- Read data can be shifted out upon resume of erase sequence.
Read latency at program/erase is improved to 50us, which is comparable to normal read latency (~40us).

- Program-suspend function
- Erase-suspend function
Outline

- Introduction
- Chip Architecture for Small Die Size
- MLC Programs Techniques
- New Features (Read-Latency Reduction)
- Summary of Key Features
- Conclusion
Summary of Key Features

- Density: 64Gb, 2-bit/cell
- One sided ABL architecture
- Organization
 - 16kB / Page
 - 2 Pages / WL
 - Single-array configuration
- Program Throughput: 15MB/s
- Burst Cycle Time: 400Mb/s/pin Toggle mode @1.8V
- Power Supply: 2.7V to 3.6V
- Technology: 3-Metal 19nm CMOS
- DieSize: 112.8mm²
Conclusion

- For the first time, a 112.8mm² 64Gb Multi-level (2bits/cell) NAND flash memory is developed
 - 19nm CMOS technology
 - Single Array configuration
 - One sided All.Bit.Line

- 400Mb/s/pin 1.8V high speed Toggle Mode interface

- 15MB/s programing throughput with high reliability
 - Bit-Line Bias Acceleration(BLBA)
 - “BC” states-First program algorithm

- Read latency is improved by Program-Suspend and Erase-Suspend functions
Acknowledgments

The author thank M. Momodomi1, S. Ohshima1, S. Mori1, T. Hara1, K. Quader2, M. Mofidi2, R. Shrivastava2, Y. Fong2, S. Sprouse2, K. Kanda1, T. Hisada1, K. Isobe1, M. Sato1, Y. Shimizu1, T. Shimizu1, T. Sugimoto1, T. Kobayashi1, K. Inuzuka1, N. Kanagawa1, Y. Kajitani1, T. Ogawa1, J. Nakai1, K. Iwasa1, M. Kojima1, T. Suzuki1, Y. Suzuki1, S. Sakai1, T. Fujimura1, Y. Utsunomiya1, T. Hashimoto1, M. Miakashi1, N. Kobayashi1, M. Inagaki1,

1Toshiba Corp., Yokohama, Kanagawa, Japan
2SanDisk Corp., Milpitas, California, USA
Acknowledgments

Y. Matsumoto¹, S. Inoue¹, Y. Suzuki¹, D. He¹, Y. Honda¹, J. Musha¹, M. Nakagawa¹, M. Honma¹, N. Abiko¹, M. Koyanagi¹, M. Yoshihara¹, K. Ino¹, M. Noguchi¹, T. Kamei², Y. Kato², S. Zaitsu², H. Nasu², T. Ariki², H. Chibvongodze², M. Watanabe², H. Ding², N. Ookuma², R. Yamashita², G. Liang², G. Hemink², F. Moogat², C. Trinh², M. Higashitani², T. Pham², K. Kanazawa¹ and the entire Design, Layout, Device, Evaluation, Test, and Process teams for supporting the development of this project

¹Toshiba Corp., Yokohama, Kanagawa, Japan
²SanDisk Corp., Milpitas, California, USA