3 Bit Per Cell NAND Flash Memory on 19nm Technology

Yan Li, Ph.D
Sr. Director of NAND Design
SanDisk Corporation
During our meeting today we will be making forward-looking statements. Any statement that refers to expectations, projections or other characterizations of future events or circumstances is a forward-looking statement, including those relating to revenue, pricing, market share, market growth, product sales, industry trends, expenses, gross margin, future memory technology, production capacity and technology transitions and future products.

Actual results may differ materially from those expressed in these forward-looking statements due to the factors detailed under the caption “Risk Factors” and elsewhere in the documents we file from time-to-time with the SEC, including our annual and quarterly reports.

We undertake no obligation to update these forward-looking statements, which speak only as of the date hereof.
Outline

- Introduction to 3 bits per cell
- Margin loss due to temperature
- X3 program algorithm
- Performance and endurance tradeoff
- High speed IO TM 400Mbps
- Conclusion
Outline

- Introduction to 3 bits per cell
- Margin loss due to temperature
- X3 program algorithm
- Performance and endurance tradeoff
- High speed IO TM 400Mbps
- Conclusion
Ever increasing digital data – increase demand for NAND flash memory
The Read Perf in X3 does not differ much between SLC/MLC
All Bit Line Architecture (ABL) for High Performance

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Conventional</th>
<th>ABL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write</td>
<td>Half of Bitlines</td>
<td>All of Bitlines (x2)</td>
</tr>
<tr>
<td>Read</td>
<td>Half of Bitlines</td>
<td>All of Bitlines (x2)</td>
</tr>
<tr>
<td>Erase</td>
<td>Whole Block</td>
<td>Whole Block</td>
</tr>
</tbody>
</table>

Endurance is better (Less PD)
ABL and X3 Technologies

X3 Technology
- Maintain low cost
- Reduce die size

ABL Technology
- Increase performance
- Reduce power consumption

Combining X3 and ABL technologies @19nm means

Enabling many applications with higher capacity in Small Form Factor
Need innovative algorithms to maintain the reliability
Shrinking Vt margin requires more system management
Outline

- Introduction to 3 bits per cell
- Margin loss due to temperature
- X3 program algorithm
- Performance and endurance tradeoff
- High speed IO TM 400Mbps
- Conclusion
Factors Affecting Vt Window

Based on SanDisk Internal Evaluation

Low End Vt Limitations
(a) Ability to sense deeper
(b) Can not Erase deeper

High End Vt Limitations
(1) Can not Program higher
(2) Program Disturbs

Vt Margin Budgets for
(a) Program/Read Disturb
(b) Program/Erase cycling and Data Retention
(c) Margin loss (such as temp cross)

Factors Affecting Individual Vt Width
(1) Programming step size
(2) ECC capability
(3) Cell scaling factors

---Cell to cell Coupling effects
Temperature Cross Shift (TCS)

Cell Distributions at Two Temperatures

- When the X3 read levels are set at High Temp, there will be a lot of error bits when reading at Low Temp due to TCS
TCO Compensated

Cell Distributions at Two Temperatures

- 85°C
- -30°C with comp.

- After temperature compensation, the read error reduced by 75%
Outline

- Introduction to 3 bits per cell
- Margin loss due to temperature
- X3 program algorithm
- Performance and endurance tradeoff
- High speed IO TM 400Mbps
- Conclusion
Cell-to-Cell Coupling (CCC) Trend

- With technology scaling, CCC increases dramatically
- Air Gap technology make the 19nm (AG) CCC equivalent to 24nm (no AG) ~ 27% reduction
Three-Step Programming (TSP)

- Each WL programming consists of 3 steps:
 - **Step 1**: Binary program
 - **Step 2**: Coarse program
 - **Step 3**: Fine program

- Residual CCC (RCCC~final Vth movements) is 5%
Outline

- Introduction to 3 bits per cell
- Margin loss due to temperature
- X3 program algorithm
- Performance and Endurance tradeoff
- High speed IO TM 400Mbps
- Conclusion
Factors Affecting Performance

- The final cell Vth distribution width ΔV is determined by
 - $\Delta V = \Delta V_{\text{PGM(step)}} + \text{RCCC(residual)} + \text{noise}$

- Number of program pulse needed to finish program
 $$\text{NP} = \frac{(V_G - \text{Ver})}{\Delta V_{\text{PGM(step)}}}$$
 $\text{NP}=\text{number of program pulses}$
The performance gain in 19nm X3 from the small residual CCC (RCCC) using TSP is 7% compared with 56nm X3 even though the CCC increased by 4.5 times.

Performance gain from precise TCO compensation is 5%.
Performance for 19nm X3 128Gb

Selected WL Waveforms

- **18MB/s** with 2-plane (16KB x 2x3) programming
 - ABL is the main contributor to high performance
- **Die Size 170.6mm²**
Raw Flash Capabilities vs. Market Requirements

Vertical Integration between memory design and system management
→ Enabling Applications of X3

Cost per Bit

- 24nm 2 bits/cell
- 19nm 2 bits/cell
- 19nm 3 bits/cell

Endurance
Sequential R/W
Outline

- Introduction to 3 bits per cell
- Margin loss due to temperature
- X3 program algorithm
- Performance and endurance tradeoff
- High speed IO TM 400Mbps
- Conclusion
TM 400MB/s on 19nm X3 NAND

NAND

Controller

Toggle Mode

DQS

CE#
ALE
CLE
RE#
WE#
R/B#
WP#
I/O[7:0]

DQS

CE#
ALE
CLE
RE#
WE#
R/B#
WP#
I/O[7:0]

2ns
Outline

- Introduction to 3 bits per cell
- Margin loss due to temperature
- X3 program algorithm
- Performance and endurance tradeoff
- Toggle mode 400Mbps
- Conclusion
Conclusion

- 19nm 3 bits/cell is successfully manufactured
 - 3 bits/cell NAND flash still possible in deep sub 20nm NAND flash
- 3 Bits/cell provide cost benefit and small form factor
- High Speed IO interface can achieve 400MB/s which improve the system performance
- Tradeoff can be employed between ECC, Endurance and Performance
- Vertical Integration between memory and system enable X3 into many applications at SanDisk
Acknowledgments

This work is developed jointly between SanDisk and Toshiba.

©2012 SanDisk Corporation. All rights reserved. SanDisk is a trademark of SanDisk Corporation, registered in the U.S. and other countries.