What Flash Means to the Future of Storage System Architectures

Starboard Storage Systems
Kirill Malkin
Lee Johns
Flash in Storage Systems Today

• The Use of Flash in Storage Solutions:
 • Storage Tier
 • As a replacement for HDD
 • Storage System Writeback Cache
 • Absorbs rapid-fire writes
 • Storage System Read Cache
 • Extension of DRAM buffer cache
 • Server-side Cache
 • Eliminates networking latency
Different Shapes & Forms of Flash

- NAND chip types
 - SLC, e/MLC, TLC…
- Attachment type
 - SATA, SAS, PCIe
- Wear leveling algorithms
 - Rewrite cycles (longevity)
- DRAM front-end
 - Performance, read disturb mitigation
- Write completion guarantee
Basic Storage System Architecture

- NVRAM absorbs writes
- NVRAM assists RAID updates
- Buffer cache facilitates read-ahead
- NVRAM 1-8GB
- Cache 16-64GB
Storage System with Flash SSDs

- Replace HDDs with SSDs
- Avoid full RAID rebuilds
- Compression and deduplication
 - Reduce data footprint to mitigate write amplification
 - Speed up reads, improve caching
All-SSD Systems have Issues

- **Endurance & Longevity**
 - How long will it last given the load?
 - SLC is good, MLC not so much
 - Some devices don’t fail, just slow down
- **Lower capacity compared to HDD**
 - Especially SLC
 - Particularly on non-compressible, non-dupe data
- **Cost**
 - SLC is $$$$$$
 - MLC is $$
Active Data Footprint

• Modern Storage Systems feature large data capacity (30TB-1PB)
• Yet only about 5% of data is active at any one time: e.g. for a 30TB system, only 1.5TB
 • For a typical set of workloads
 • Except for initial loads and full backups
• If the active I/O is always directed to Flash, we can get Flash-like performance for the entire Storage System
Cached or Tiered? Accelerated!

- Absorb random writes with flash
 - Heavy write streams go directly to pool
- Large writeback area acts as a “tier”
- Frequently accessed stripes stored in flash
 - Heavy read streams go directly from pool
- Flash stratification:
 - SLC for the most critical loads and metadata
 - Disposable MLC for read caching
 - Redundant MLC/TLC for the dynamic pool
- Flash is added if the active footprint grows
- The pool acts as an archive tier
Hybrid Storage System Architecture

- **WRITES**
 - Writeback Accelerator
 - SLC, mirrored, 0.1-1TB
 - Circular buffer
 - Linearized flush
 - PCIe or SAS

- **READS**
 - Read Accelerator
 - MLC, linear, SAS
 - Adaptive Algorithm
 - Optional compression

- **Spillover SSD**

- **Pool**

- **Stripe Cache**

- **Redundancy**
 - Transactional writes
 - Optional compression & deduplication
 - HDD or MLC/TLC SSD
 - SAS or SATA

Streams
Starboard AC Series Systems for Mixed Workloads

- Unstructured Data
- Virtualized Data
- Structured Data
Summary

• High-performance Flash memory and SSDs can help accelerate reads and writes in mostly-flash and hybrid storage systems
• Multi-level caching architecture accommodates a broad spectrum of Flash devices available on the market
• With only 5% active data footprint, multi-level caching can deliver the performance of the best Flash device for the entire storage system
• Adaptive autonomic tiering, caching and linearization algorithms are required to fulfill this promise
Questions?

http://www.starboardstorage.com