NAND Flash Architecture and Specification Trends

Michael Abraham (mabraham@micron.com)
NAND Solutions Group Architect
Micron Technology, Inc.
Abstract

• NAND Flash is quickly moving to sub-20nm lithographies, making it the fastest scaling semiconductor technology ever!
• What impact do these shrinks have to NAND’s architecture, performance, and reliability in system solutions?
• Learn how to prepare for these changes and counteract some of them through improved system design.
• Also, take a look at innovative NAND technologies that improve performance and reliability.
Topics

• NAND Flash Architecture Trends
• The Cloud and Clients
• Enterprise Application Requirements
• ECC and SSD Topologies
NAND Process Migration: Shrinking Faster than Moore’s Law

Data based on publicly available information
Memory Organization Trends

NAND block size is increasing

- Larger page sizes and more planes increase sequential throughput
- More pages per block reduce die size
- As ECC requirements increase, the spare area per NAND page is increasing
Consumer-grade NAND Flash: Endurance and ECC Trends

- ECC improves data retention and endurance
- Process shrinks lead to less electrons per floating gate
- To adjust for increasing RBERs, ECC is increasing exponentially to achieve equivalent UBERs
- ECC algorithms are transitioning from BCH to LDPC and codeword sizes are increasing
Larger Page Sizes Improve Sequential Write Performance

- For a fixed page size across process nodes, write throughput decreases as the NAND process shrinks.
- NAND vendors increase the page size to compensate for slowing array performance.
- Write throughput decreases with more bits per cell.

Santa Clara, CA
August 2012
More Pages Per Block Affect Random Write Performance

- As block copy time increases, random performance decreases.
- Key factors that impact NAND Flash random write performance:
 1. Number of pages per block
 2. Increase of tPROG
 3. Increase in I/O transfer time due to larger page sizes (effect not shown below)
- Impact to system product random performance:
 - Some card interfaces have write timeout specs at 250ms.
 - To improve random performance, block management algorithms manage pages or partial blocks.

Santa Clara, CA
August 2012
Larger Monolithic NAND Densities Increase Random Read Latencies

- Most applications favor read operations over write operations
- Most read operations are 4KB data sectors
- As monolithic NAND density increases, less NAND die are being used for a fixed system density
- As tPROG increases, the latency of random 4KB sector reads becomes more variable in mixed-operation environments as the probability of needing to read from a die that is busy increases

NAND Flash TAM by Density (Units)

Santa Clara, CA USA
August 2012

Source: iSuppli 2Q12
NAND Interface Trends for High-Performance Applications

- **Applications**
 - Transitioned to 200MT/s interface
 - Shifting to 400MT/s interface

- **Packaging**
 - Typically BGA
 - 2 channel widely available
 - 4 channel being standardized

- **ONFI 3.0 compatible components are available**
The Cloud’s Impact on NAND System Architectures

Cloud: Long-term Data

Client: Near-term Data
Storage Comparison

Client Storage
- Information stored locally, on the device
- Consumer or SSD grade NAND Flash

Cloud Storage
- Information stored in hosted server farms or data centers
- SLC or Enterprise grade NAND Flash
Comparison of NAND Flash by Application Requirement

<table>
<thead>
<tr>
<th>Application Requirement</th>
<th>Client Storage / Consumer</th>
<th>Client Storage / SSD Grade</th>
<th>Cloud Storage / Enterprise Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAND Cell</td>
<td>MLC-2 → MLC-3</td>
<td>MLC-2 → MLC-3</td>
<td>SLC → MLC-2</td>
</tr>
<tr>
<td>Endurance / Cycling</td>
<td>Up to 3K</td>
<td>Up to 3K</td>
<td>Up to 100K (SLC) Up to 30K (MLC-2)</td>
</tr>
<tr>
<td>DPM</td>
<td>Consumer grade</td>
<td>Better</td>
<td>Best</td>
</tr>
<tr>
<td>I/O Channel Throughput</td>
<td>40 → 200 MT/s</td>
<td>40 → 400 MT/s</td>
<td>133 MT/s → 400 MT/s</td>
</tr>
<tr>
<td>UBER</td>
<td>1E-14</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Data retention at max cycling</td>
<td>1 year</td>
<td>1 year</td>
<td>Less</td>
</tr>
<tr>
<td>NAND Package Placements</td>
<td>Typically 1 to 4</td>
<td>4 to 16</td>
<td>Up to 32</td>
</tr>
</tbody>
</table>
How Do Enterprise Applications Meet Enterprise Requirements?

<table>
<thead>
<tr>
<th>Application Requirement</th>
<th>Controller</th>
<th>SSD/Enterprise-grade NAND Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher system density</td>
<td>Ability to handle many NAND Flash – some controllers up to 256 die</td>
<td>Lower DPM</td>
</tr>
<tr>
<td>More throughput</td>
<td>Page-based block management, DRAM cache, Overprovisioning, More I/O channels, Faster I/O channels, Multiple ECC engines, Simultaneous, mixed operations</td>
<td>Faster I/O channel</td>
</tr>
<tr>
<td>Low latency reads</td>
<td>DRAM cache, Use smaller monolithic NAND densities</td>
<td></td>
</tr>
</tbody>
</table>
How Do Enterprise Applications Meet Enterprise Requirements? (Part 2)

<table>
<thead>
<tr>
<th>Application Requirement</th>
<th>Controller</th>
<th>SSD/Enterprise-grade NAND Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher endurance / reliability</td>
<td>Higher ECC</td>
<td>More ECC required, Lower UBER, Higher endurance</td>
</tr>
<tr>
<td>More consistent use over time</td>
<td>Balanced block management to reduce write amplification and provide even wear leveling so NAND die and blocks wear evenly</td>
<td></td>
</tr>
<tr>
<td>Power within budget for parallel operations</td>
<td>Block management throttles parallelism as needed</td>
<td>Peak power reduction</td>
</tr>
</tbody>
</table>
• Enterprise-grade NAND requires more ECC than consumer-grade NAND Flash to achieve higher endurance and lower UBER

• Providing more ECC to a consumer-grade NAND Flash does not necessarily improve endurance, though it can improve data retention

• ECC requirements are going to increase to the point that it will be a significant amount of real estate on a multi-channel controller
How to Handle Increasing ECC?

- ECC is NAND Flash technology dependent and is implemented in hardware
- Block management and drivers are not technology dependent and can be updated in software/firmware
- ECC Free Solution
 - Tightly couples ECC to the NAND technology
 - Also covers NAND aggregation, reducing channel loading
 - Block management performed in processor can use DRAM buffer and results in a higher performance than a fully managed solution
Questions?
Other Micron Presentations

- NAND uses in high performance platforms
 - Tutorial A-11 – Tuesday, August 21st @ 8:30 am
- NAND flash architecture and specification trends
 - Tutorial B-11 – Tuesday, August 21st @ 8:30 am
- MLC media discussion
 - Tutorial C-11 – Tuesday, August 21st @ 8:30 am
- Next-generation storage and the mobile computing ecosystem
 - Session 101-B – Tuesday, August 21st @ 8:30 am
- Why ECC-free NAND is the best solution for high-performance applications
 - Session 102-A – Tuesday, August 21st @ 10:10 am
- How ONFI standards are fueling high-performance SSDs
 - Session 102-C – Tuesday, August 21st @ 10:10 am
- The need for differentiated MLC solutions
 - Tutorial F-21 – Wednesday, August 22nd @ 8:30 am
- Virtualized SSD storage for enterprise systems
 - Tutorial H-22 – Wednesday, August 22nd @ 4:30 pm
- Performance trade-offs of flash-based client storage solutions
 - Tutorial A-31 – Thursday, August 23rd @ 8:30 am
- Phase Change Memory – Panel Discussion
 - Session 302-D – Thursday, August 23rd @ 9:50 am
- 2.5-inch PCIe interface for enterprise flash cache – Panel Discussion
 - Session 303-B – Thursday, August 23rd @ 3:10 pm
About Michael Abraham

• Architect in the NAND Solutions Group at Micron

• Covers advanced NAND and PCM interfaces and system solutions

• IEEE Senior Member

• BS degree in Computer Engineering from Brigham Young University