Harnessing PCIe Gen3 Capabilities for Storage Applications

Ashwin Matta
Engineering Director
Cadence Design Systems
Growing Storage and Bandwidth Needs
Overview

- Generic storage system architecture
- PCIe Gen3 strengths for storage applications
 - Bandwidth and flexibility
 - Single Root IO Virtualization (SR-IOV)
 - Protocol extensions (ECNs)
- Example Configurable Flash Storage System
- Summary
Generic Storage System

- **Host Sub-System**
 - SAS, SATA, PCIe, USB3, UFS, other

- **CPU Sub-System**
 - CPU, UART, Timer, GPIO, etc.
 - Multiple cores per socket

- **Memory Sub-System**
 - SRAM or DRAM

- **Storage Sub-System**
 - SAS/SATA-based HDD
 - Flash-based SSD
Advantages of PCIe Gen3 Based Host Interface – Bandwidth/Flexibility

- Higher raw bandwidth
 - Single Gen3 X4 link: 4GB/s
 - Compared to SATA/SAS 3.0: 600MB/s
 - PCIe with NVMExpress host interface can achieve close to maximum throughput unlike SAS/SATA

- With ONFI 3.0 and multiple flash channels PCIe Gen3 is the only protocol that can keep pace with data transfer rates

- PCIe with NVMExpress supports very large number of outstanding host commands
 - Necessary to support multiple controllers with multiple chip enables
 - SATA/SAS max out at 32 outstanding host commands
Advantages of PCIe Gen3 Based Host Interface – IO Virtualization (IOV)

- IOV enables multiple system images (SI) on a single storage system
 - SI is a real or virtual system of CPU, OS, I/O, etc. supported through Virtualization Intermediary (VI) or Hypervisor (e.g., VMWare hosting Linux/Win32 in a PC)
 - Storage system may not be aware that it is being shared

- Significant improvement in IO performance without overhead of VI in every IO operation

Source: "IO Virtualization and Sharing: PCI-SIG Technical Seminar 2007" – Michael Krause (HP), Renato Recio (IBM)
IO transactions through VI add significant latency through the path of every transaction.

Native IO virtualization nearly doubles throughput compared to VI-based IOV.
Advantages of PCIe Gen3 Based Host Interface – ECNs

- Protocol extensions via ECNs
 - Extend native protocol with useful features for special applications

- Fully backwards compatible with PCI, PCI-X, Gen1/2
 - Eg. IOV un-aware software/firmware treats PCIe device with IOV support as base PCIe device
PCIe ECNs Applicable to Storage Systems

- **ARI Support**
 - Enables IOV with support of up to 256 functions (physical or virtual)

- **Multicast**
 - Mechanism to broadcast single data set or command to multiple receivers
 - Useful in sending data to RAID or mirrored storage

- **TLP Processing Hints (TPH)**
 - Hints for optimized PCIe packet (TLP) processing within host memory and system cache
PCIe ECNs Applicable to Storage Systems (contd.)

- **Re-Sizable BARs (Base Address Registers)**
 - Software selection of BAR aperture size based on system resources/constraints
 - Facilitates creation of adapters for high-end servers and low-end workstations with a wide span of memory requirements

- **Optimized Buffer Flush and Fill (OBFF)**
 - Based on premise that asynchronous device activity hampers power management of CPU and memory sub-systems
 - Mechanisms for devices to synchronize DMA activity for improved platform power management
Example Configurable Flash Storage System

System Memory (DRAM or SRAM)

Multi-Port Arbiter & Memory Controller

Centralized Advanced ECC (LDPC)

Custom HW Accelerator

CPU Sub-System

Host Interface #0

Host Interface #n

Multi-Protocol Host PHY

DMA

Host Adapter

Compression Encryption

PCIe

SAS

SATA

Other

Flash Memory Summit 2011
Santa Clara, CA

Flash Memory Summit 2011
Santa Clara, CA
Summary

- PCIe Gen3 doubles effective bandwidth of data transfer to nearly 1GB/s per lane
- PCIe protocol is ideal for storage transfer needs:
 - Practically unlimited number of outstanding host commands
 - IOV for single storage device to appear as multiple devices
 - Ease of use and optimized operation with new ECNs
- Flash Storage systems utilizing PCIe Gen3 can address growing needs for storage, bandwidth, performance and end-user flexibility