Current and Emerging Memory Technology Landscape

Greg Atwood
Micron Technology
Gatwood@Micron.com
A New Era Emerging for Memory?

Convergence of many factors/pressures:

- Increasing importance of memory to user experience
 - Our lives are becoming one big shared database, with IOPs becoming more important than MIPs
- Both NAND and DRAM facing scaling challenges
 - No hard “wall,” but increasing complexity
- Explosion of “new” memory storage concepts
 - New storage physics are enabling new usage models
- Evolving memory hierarchy
 - New features, relentless cost reduction, and need for I/O performance are remaking the memory hierarchy

Memory is moving from a support role to a defining system role
Memory-Relevant Trends

- **Enterprise** (Servers/Storage)
 - Performance-driven (generally I/O limited)
 - “Green” focus bringing power into foreground
 - Reliability vs. cost is the trade-off

- **Computing** (Desktops/Laptops)
 - Ease of use
 - Instant-on/off
 - Power vs. “good enough” performance trade-off

- **Mobile** (Laptops/MIDs)
 - Ease of use
 - Instant-on/off

- **Cellular** (Phones)
 - Performance-driven (generally I/O limited)
 - “Green” focus bringing power into foreground
 - Reliability vs. cost is the trade-off

Flash Memory Summit 2011
Santa Clara, CA
Memory Scaling Challenges

Just as memory usage becomes “interesting”…

- “Planar” nonvolatile (NVM) technology scaling is becoming difficult:
 - MOS transistor-based cell; charge-storage memory effect
 - Starting to encounter physical scaling limitations
 - Manifesting first as reliability \rightarrow endurance/retention
 - Increasing degree of memory management required for functionality \rightarrow memory abstraction

- No scaling “brick wall,” but complexity is increasing the level of management required to maintain added functionality
Flash Cell Scaling Challenges

Basic NAND structure has changed little over time…

Main scaling issues:

• Few-electron problem
• Capacitance limitations
• Tunnel and interpoly charge retention
• Voltage isolation
• Parasitic charge trapping
• Read and write noise

State of the art: 25nm NAND
For a floating-gate cell, the number of electrons required for a V_T shift scales with the FG capacitance.

At 25nm, MLC states are separated by 30–50 electrons (300–500mV).
NAND media scaling issues are being addressed through system-level management tools such as error correction, wear leveling, and block retirement—but straightforward options are being exhausted.
NAND Scaling Roadmap

Several possible scenarios…

1X nm Planar NAND → Planar Scaling Ends

3-D NAND Stack 16-64 Levels → Add More Levels

2X nm Planar NAND

Cross-point replaces NAND → Add More Levels

Other Path
Going 3-D → Three Major Options

- **Deck-by-deck NAND** – SOI for upper decks
- **Vertical NAND** – Vertical cells arranged in vertical strings
- **Cross-point** – RRAM (resistive RAM) cells
3-D NAND Highlights

- Significant industry effort on 3-D NAND development
- Conference publications showing promising results
- Possibility to extend NAND roadmap for several generations
Requirements for NAND Successor

• Cost structure – beat NAND costs:
 ▪ MLC-capable
 ▪ 3-D-stackable
 ▪ Simple process flow

• Scalability:
 ▪ In x & y with lithography
 ▪ In z with number of layers

• Reliability, performance, and power:
 ▪ To meet emerging usage requirements
 ▪ At component and system level
NAND Successor Not the Only Target

New Memory Hierarchy?
Balancing Latency, Power, Cost, and Endurance

Latency ~ RAM Power ~ NAND
Bit Alterability ~ RAM Endurance >> NAND
RAM > Cost > NAND
Alternative New-Memory Concepts

Explosion of “new” memory concepts:
- New storage materials, new storage concepts
- Many ideas, varying functionality/cost, most unproven

FERAM
PCM
CBRAM

MRAM
MOx-RRAM
Polymer RRAM

Polymer FeRAM
CNT
Molecular
Phase Change Memory Case Study

• Of the emerging RRAMs, PCM is the most mature:
 ➢ Already in low-volume production
 ➢ Demonstrated at Gb density vs. other EM at Mb density
 ➢ Announced by multiple memory companies

• PCM has been heavily studied for 10+ years:
 ➢ Widely published – lots of good-quality technical content
 ➢ Chalcogenide-based material understanding is fairly mature
 ➢ Many active researchers in both industry and academia

• Provides insight into other emerging-materials systems:
 ➢ Many of the RRAMs share similar attributes with PCM
Why Phase Change Materials Are Interesting

- Amorphous and crystalline phase structures are similar
 → Easy transition between phase states
- Material contains voids and vacancies
 → Easy movement of atoms
- Volume of crystalline and amorphous phase closely matched
- Large set of materials to choose from for best performance

Ge$_2$Sb$_2$Te$_5$

Flash Memory Summit 2011
Santa Clara, CA

Phase Change Memory Concept

Storing mechanism:
Amorphous/polycrystal phases of a chalcogenide alloy; example shown is Ge$_2$Sb$_2$Te$_5$ (GST)

Sensing mechanism:
Resistance change of the GST

Writing mechanism:
Self-heating due to current flow (Joule effect)

Cell structure:
1 diode, 1 resistor (1D/1R)
History of PCM Development

PCM cell

- S. Lai and T. Lowrey, IEDM 2001, 180nm
- F. Pellizzer et al., VLSI 2004, 180nm
- G. Casagrande et al., VLSI 2004, 180nm
- F. Pellizzer et al., VLSI 2006, 90nm
- M. Gill et al., ISSCC 2002, 180nm
- G. Servalli, IEDM 2009, 45nm

PCM array & chip

- G. Casagrande et al., VLSI 2004, 180nm
- Bedeschi et al., ISSCC 2008, 90nm 128Mb (256Mb MLC)
- C. Villa et al., ISSCC 2010, 45nm 1Gb

Timeline:
- 2001
- 2003
- 2005
- 2007
- 2009
- 2011

- Concept
- Demonstration
- Technology Validation
- Product Reliability
- Manufacturing
PCM Characteristics

PCM offers attributes of RAM and NAND
Roughly aligned to “storage-class memory”
PCM Applications Opportunities

- **Wireless system** to store XiP, semi-static data
 - PCM bit alterability allows direct-write memory

- **Solid state storage subsystem** to store frequently accessed pages and elements that are easily managed when manipulated in-place
 - PCM caching to improve performance & reliability

- **Computing platforms** taking advantage of nonvolatility to reduce power
 - PCM offers endurance and write latency that are compelling for a number of novel solutions
3-D Cross-Point Memory—
Best Chance to Reach NAND Cost?

Cross-point memory *features*:

- Simple small $4F^2$ cell → low potential cost
- Suitable for 3-D stacking → cell size $(4/n)F^2$
- Array over circuitry → better array efficiency
3-D Cross-Point Memory—Best Chance to Reach NAND Cost?

Cross-point memory **challenges**:
- Compatible diode selector
- Must be multilevel cell capable (2–3 bits/cell)
- Must be able to stack layers of cells
- Low temperature processing
- Interconnect-intensive

Selector “diode” requirements:
- A “non-ohmic” device
- Compatible with memory element
- Stringent on/off current requirements
- Unipolar- or bipolar-depending cell
Wide Range of Cross-Point Options and Combinations

Selection Device
- Homojunctions → polySi p/n junctions
- Heterojunctions → P-CuO/n-InZnO
- Schottky diode → Ag/n-ZnO
- Chalcogenide ovonic threshold switching (OTS) materials
- Mixed ionic electronic conduction (MIEC) materials

Memory Device
- STTRAM
- RRAM or CBRAM
- PCM
Phase Change-Based Cross-Point

Stacked phase change memory 64Mb demonstrator:

- Same PCM memory concept
- Ovonic threshold switch – OTS as selection device
- OTS is the same class of materials as PCM but “frozen” in the amorphous phase

![64Mb Array Distribution](image)

>1Mc Endurance Demonstrated

![3-d corner view of PCMS array](image)
Summary:
A New Era Emerging for Memory!

• Increasing importance of memory to user experience:
 ➢ Our lives are becoming one big shared database

• Increasing importance of memory to system performance:
 ➢ Server performance and power, client portability, and instant-on

• Both NAND and DRAM facing scaling challenges:
 ➢ No hard “wall,” but increasing complexity
 ➢ New storage concepts are emerging for cost and features

• Evolving memory hierarchy around NVM capabilities:
 ➢ Moore’s Law cost treadmill → NVM becoming high-performance storage
 ➢ New memory features → possibility of storage-class memory

Memory is moving from a support role to a defining system role

Revisit Micron’s FMS 2011 presentations at:
www.micron.com/fms