Tutorial T1C
Testing/Performance/Endurance

Changing Dynamics of Flash Performance Benchmarks
Bob Weisickle – OakGate Technology
Mike Engbretson – Granite River Labs

August 10, 2010
Agenda

- Market Trend - update
- Changes in Performance Landscape
- Benchmarking Methods & Standards
- Challenges beyond just Performance
- Ways OakGate Technology and Granite River Labs can help
SSD Market Trend

Server Class
- SATA/SAS/FC/PCI-e
- Primarily SLC
- Leadership Read/Write Performance
- Acceptable Endurance for any Traffic Workload

Consumer Class
- SATA
- Primarily MLC
- Good Read Performance
- Limited Write Performance
- Limited Endurance but Acceptable for Client Applications

- SATA/SAS/PCI-e
- Primarily MLC/eMLC
- Good Read Performance
- Acceptable Write Performance
- Endurance dependent on Application
- Best Price/Performance
Performance Landscape

• 3rd / 4th Generation of Controllers
• Improved Performance (especially writes)
• Improved OTB versus Steady State Performance
• Refinements in Wear-leveling and Garbage Collection algorithms
• New FLASH (eMLC) that improves endurance
• Use of Data Compression to improve Write Performance and Write Amplification
• 4K IO Optimization – general trend to 4K Sectors
OTB versus Steady State

MLC FLASH – 2 hour pre-conditioning
2010 2011

- Higher Performance
- Quicker transition to Steady State

Monday, August 29, 11
Impact of Data Compression

- Need to understand the Entropy of the Real Data
4K IO Optimized

- IO Alignment Important
- Flash Technology Dependent
Benchmarking Methods

- Standards Based Performance/Endurance
 - SNIA – Solid State Storage Performance Test Specification Enterprise 1.0
 - JEDEC – JESD218A and JESD219
- User Defined Performance Measurement
 - Application Specific
 - Synthetic workloads
 - Captured Traffic workloads
- Functionality Validation
 - Conformance and Error Injection
Benchmarking Methods

- SNIA – SSS-PTS-Enterprise Ver. 1.0

- Transition from OTB State
- Reach Steady State
- Make Reliable/Repeatable Measurements
Benchmarking Methods

- SNIA – SSS-PTS-Enterprise Ver. 1.0
- Measurement Rounds
- Measurement Convergence

<table>
<thead>
<tr>
<th>Blk Size</th>
<th>0/100</th>
<th>95/5</th>
<th>65/35</th>
<th>50/50</th>
<th>35/65</th>
<th>5/95</th>
<th>100/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 KiB</td>
<td>1392</td>
<td>3782</td>
<td>1366</td>
<td>1605</td>
<td>1990</td>
<td>1411</td>
<td>30825</td>
</tr>
<tr>
<td>4 KiB</td>
<td>987</td>
<td>2963</td>
<td>1235</td>
<td>1466</td>
<td>1441</td>
<td>1029</td>
<td>22455</td>
</tr>
<tr>
<td>8 KiB</td>
<td>815</td>
<td>2418</td>
<td>1252</td>
<td>1347</td>
<td>1166</td>
<td>839</td>
<td>15619</td>
</tr>
<tr>
<td>16 KiB</td>
<td>607</td>
<td>1819</td>
<td>1020</td>
<td>1167</td>
<td>880</td>
<td>653</td>
<td>9902</td>
</tr>
<tr>
<td>32 KiB</td>
<td>395</td>
<td>1300</td>
<td>852</td>
<td>1001</td>
<td>558</td>
<td>408</td>
<td>5780</td>
</tr>
<tr>
<td>64 KiB</td>
<td>238</td>
<td>894</td>
<td>731</td>
<td>418</td>
<td>345</td>
<td>249</td>
<td>3187</td>
</tr>
<tr>
<td>128 KiB</td>
<td>134</td>
<td>603</td>
<td>592</td>
<td>242</td>
<td>189</td>
<td>138</td>
<td>1675</td>
</tr>
<tr>
<td>1024 KiB</td>
<td>174</td>
<td>158</td>
<td>83</td>
<td>73</td>
<td>71</td>
<td>119</td>
<td>218</td>
</tr>
</tbody>
</table>
Challenges beyond Performance

- Data Validation
 - Data Integrity Checking (including stale data and missed writes)
 - Data commit during power failure/recovery
- Endurance Prediction
 - Using SMART Attributes
 - JEDEC
- Latency
 - IO Latency Distribution
 - Understand impact on application
- Protocol/Command Robustness
 - Device Software Reliability
Latency Distribution
Example 1

- A few longer latency IO's but in general very good distribution
• Large groupings of long latency IO's
• Impact on Application Performance
• Impact on Raid Controller Performance
Smart Attributes (Endurance Related)

<table>
<thead>
<tr>
<th>ID</th>
<th>Attribute Name</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Retired Block Count – Life Indicator</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>171</td>
<td>Program Fail Block Count – Life Indicator</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Erase Fail Block Count – Life Indicator</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>1) Wear Range Delta</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Wear Leveling Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>1) SSD Life Left</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Temperature (degC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Vendor Unique</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Media Wear-out Indicator</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>Lifetime Writes from HOST</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Integrity/Power Fail Testing

- Why this is Important
 - Young and Maturing Technology (FLASH, Controllers, Super Caps)
 - New Software Algorithms
 - Data is not Stationary (wear-leveling)
- What should be tested
 - Super Cap or Equiv Hold up time – did all data get committed in time
 - Extended Data Checking (correct data and from correct location/time)
 - Extended Run periods to stress wear-leveling
 - Power off – data retention intervals
OakGate Technology/Granite River Labs

- Validation & Performance System
 - SNIA and Custom Performance Benchmarks
 - JEDEC Compliant Endurance test suite
 - User definable/customized Benchmarks and Validation test suites
 - Data Integrity/Power Fail Test Suite
 - Full API for fully vendor unique tests development

- Full set of Services
 - SATA/SAS physical layer compliance
 - SATA Interop Testing
 - SAS/SATA Device Benchmarking
 - Data Integrity and Power Cycle Testing
SATA/SAS Compliance - Overview

What SATA Compliance & SAS Conformance DO address:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Official Logo Program?</th>
<th>PHY</th>
<th>Digital</th>
<th>System Interop</th>
<th>Mechanical</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATA</td>
<td>Y – Administered by SATA-IO</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>“Building Blocks” cert program available for IC components DOS-based scripts used for System Interop tests</td>
</tr>
<tr>
<td>SAS</td>
<td>N – “Conformance” based on test methodologies developed by UNH</td>
<td>Y</td>
<td>Y</td>
<td>Not defined</td>
<td>Not defined</td>
<td>Receiver PHY jitter tolerance requirements defined but no conformance test spec RX/TX (return loss/impedance) test accepted practice includes “gating” out the connector</td>
</tr>
</tbody>
</table>
What SATA Compliance & SAS Conformance DO NOT address:

<table>
<thead>
<tr>
<th>Category</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY Stress Testing</td>
<td>“How much input jitter can my receiver tolerate and still pass compliance?”</td>
</tr>
<tr>
<td>PVT Characterization</td>
<td>“How much margin does my product have in meeting spec under a range of PVT conditions and what are my points of failure?”</td>
</tr>
<tr>
<td>Extensive Interop & System Validation</td>
<td>“Will my device/host interoperate with a wide range of products and system environments?”</td>
</tr>
<tr>
<td>Functional Stress Tests</td>
<td>“How well does my product handle a variety of real-world and corner case test conditions?”</td>
</tr>
<tr>
<td>Performance Benchmarking</td>
<td>“How does my product stack up against industry benchmarks and competitors’ products?”</td>
</tr>
</tbody>
</table>
OakGate Technology/Granite River Labs

• Contact OakGate Technology, Inc
 • bob.weisicke@oakgatetech.com
 • www.oakgatetech.com

• Contact Granite River Labs
 • Mike Engbretson, Chief Technology Engineer
 mikeen@graniteriverlabs.com
 • Quintin Anderson, COO
 qanderson@graniteriverlabs.com
 • www.GraniteRiverLabs.com