SSD Trim Commands Considerably Improve Overprovisioning

Tasha Frankie
tcvanesi@ucsd.edu

Gordon Hughes

Ken Kreutz-Delgado
Overview

- A model of trim is proposed and analyzed
- Such models are useful to reduce costs
- Using our model, we show improvement in the level of effective overprovisioning for uniformly distributed workloads
Outline

- Introduction
- Overprovisioning
- Trim Command
- Trim Performance Model
- Workload Model
- Theoretical Results
- Conclusion
Introduction

- SSDs are increasingly important
 - Ubiquitous in embedded devices
- Erase–before–write requirement problems:
 - In–place writes are impractical, so dynamic logical–to–physical mapping is used
 - Write amplification due to garbage collection
- Trim command helps reduce penalties caused by erase–before–write
Overprovisioning/Spare Factor

- **Overprovisioning:** Putting more physical blocks on a device than user is allowed to access
 - Increases speed of device by reducing number of writes needed in garbage collection
 - Increases lifetime of device by spreading wear over more physical blocks

- **Spare factor:** \(S_f = \frac{(T_P-u)}{T_P} \)
 Range: \((0, 1)\)

 - \(T_P\) = raw storage capacity of device, in pages
 - \(u\) = number of pages user is allowed to utilize

(Hu, 2009)
Trim*: declares logical blocks inactive

- Allows garbage collection to skip copying of trimmed physical pages when reclaiming space
- Reduces the number of in use LBAs**
 - LBA is in-use when its most recent request was a write
 - LBA is not in-use if LBA has never been written, or if most recent request issued for it is a trim

* INCITS Working Draft T13/2015-D Rev.
** LBA = Logical Block Address
25% of requests as trim transforms an SSD with zero specification spare factor \((S_f)\) into one having a mean effective spare factor \((S_{eff})\) of 33%

- This level of overprovisioning without a trim command would require 50% more physical pages than the user is allowed to write!
Trim Performance Model

Assumptions:

- One LBA is same size as one physical page
 - Straightforward calculation of effective spare factor using number of in use LBAs at any time
- Only write and trim requests are considered
 - Read requests do not affect the number of in-use LBAs or the write speed of device
Markov Birth-Death Chain:

- **State**, X_n: number of in-use LBAs at time n
- **Trim request**: reduces state by 1, occurs with probability q_x
- **Write request**:
 - Leaves state unchanged (request is for an in-use LBA), occurs with probability r_x
 - Increases state by 1 (request is for a not in-use LBA), occurs with probability p_x
Formal Markov Model

- Transition probabilities:
 \[P(X_{n+1} = x - 1 | X_n = x) = q_x \]
 \[P(X_{n+1} = x | X_n = x) = r_x \]
 \[P(X_{n+1} = x + 1 | X_n = x) = p_x \]
 - subject to \(q_x + r_x + p_x = 1 \)

- Unnormalized steady-state occupation:
 \[\pi_x = \begin{cases}
 \frac{p_0 \cdots p_{x-1}}{q_1 \cdots q_x} & x \geq 1 \\
 1 & x = 0
\end{cases} \]
 (Hoel 1972)
Workload Model

- Uniform random workload
 - Write requests uniformly random over all \(u \) user LBAs
 - Trim requests uniformly random over all in-use LBAs
 - Trim requests happen with probability \(q \);
 - Write requests happen with probability \(1 - q \)

- Unnormalized steady-state occupation

\[
\pi_x = \left(\frac{1 - q}{q} \right)^x \frac{u!}{u^x (u - x)!}
\]
Steady-State Results for $u \gg 1$

- Gaussian distribution for number of in-use LBAs*

 - Mean = $u \left(\frac{1-2q}{1-q} \right)$

 - Variance = $u \left(\frac{q}{1-q} \right)$

* By an asymptotic expansion. Will happily share math details offline.
Steady-State Results ($u = 1000$)
Effective Spare Factor S_{eff}

$$S_{eff} = \frac{T_p - X_n}{T_p}$$

- $T_p = $ number of physical pages in device
- $X_n = $ number of in-use LBAs at the current time n

$(T_p = 1200, S_{eff} = 0.17)$
Mean and Variance of Effective Spare Factor

- **Mean Effective Spare Factor** \(\bar{S}_{\text{eff}} \)
 - Can be expressed in terms of the specified spare factor \(S_f \):

 \[
 \bar{S}_{\text{eff}} = \left(\frac{1 - 2q}{1 - q} \right) \left(\frac{q}{1 - 2q} + S_f \right)
 \]

- **Variance**
 - Depends on the size of the device in pages, \(T_p \):

 \[
 \text{Var}(S_{\text{eff}}) = \frac{1}{T_p^2} \text{Var}(X_n) = \frac{1}{T_p^2} u \left(\frac{q}{1 - q} \right)
 \]
Mean Effective Spare Factor

25% trim factor transforms an SSD with zero specified spare factor into one having an effective spare factor of 33%.

Without trim, this spare factor requires 50% more physical pages than the user is allowed to write!
Conclusion

- Trim performance models can allow manufacturers and customers to minimize amount of necessary physical overprovisioning
 - Save $$!

Questions?