Design Considerations for Using Flash Memory for Caching

Edi Shmueli, IBM
XIV Storage Systems
edi@il.ibm.com
In a few decades solid-state storage will replace all spinning disks in enterprise data stores
 - We are not there yet…

Prices are still relatively high
 - Not enough manufacturing capacity to satisfy storage needs

Today it usually complements existing storage
 - High performance, low latency, low power, etc.

Flash memory is the dominant technology
 - As primary store (persistent storage)
 - As cache in front of the spinning disks (buffer pool)
Flash as Primary Store

- Standard disk-drive form factor (SSD)
 - Compatible with current subsystems designs
- Good performance for relatively small # of SSDs
 - Up to 8x improvement for some workloads
- Main question: what data to put on the SSD?
 - Filesystem metadata, database indexes, logs, etc.
- Can be done manually or semi-automatically
 - Tiering software: LUN and sub-LUN levels
- Considered a disruptive process
 - Low frequency: at nights or during periods of low activity
Flash as a Cache

- Much less disruptive and more dynamic approach
 - Adapts quickly and with minimal interference to short-term conditions in the workload e.g., few seconds of locality

- No administration costs
 - Inherently transparent and fully-automated solution

- Much more difficult to implement
 - Leverage the Flash capacity for performance, while hiding the fact it is much slower than DRAM

- Various design options
 - Extension to DRAM cache (single LRU list)
 - Second-level cache, etc.
Considerations

- Reliability
- Read-only vs. write caching
- Caching algorithms
- Metadata
- Miscellaneous
Reliability

- Most disturbing issue with Flash technology
 - Not enough field statistics

- Device-level failures (SSD)
 - No moving parts: expected to be better than disks

- Flash medium failures (bit errors)
 - Quality deteriorates with usage (wear-out)
 - Quality deteriorates with time (retention)

- Caching workloads difficult to anticipate
 - Different IO patterns compared to disks
Read-Only vs. Write Caching

- Read-only is a simpler option
 - In presence of bit errors read data from the disks

- Write cache complicates things
 - Write-through (read cache extension)
 - Write-back exposes to potential data loss

- Good idea to consider redundancy
 - Inter-device redundancy e.g., RAID-like
 - Intra-device redundancy

- Are RAID schemes appropriate for Flash?
 - Are Flash failures correlated?
Caching algorithms

- Baseline algorithm is LRU

- Rules of thumb for good cache performance
 - Five-minutes rule (Gray & Putzolu, 1987)
 - Empirical study (Bruce McNutt, 1998)

- 256GB SSD doing 100MB/s takes 45m to fill-up
 - Might not need sophisticated algorithms

- Uncontrolled caching leads to excessive wearing
 - Account for endurance in the algorithm
Metadata

- Data structures to help locate data in the cache
 - Typically a few tens of MB, DRAM resident
- Usually discarded on shutdown / reboot
 - Few minutes of warm-up penalty
- For 256GB SSD using 4KB pages
 - 64M entries x 8B (LPA + Bitmap) \rightarrow 0.5GB
- Extremely long warm-up periods
 - Up to several hours of degraded performance
Flash controllers are complicated entities
- Proprietary algorithms for wear-leveling, GC, etc.

Performance might not always be predicted
- Random write latency bursts exhibiting high variance
- Sequential latency drops to microseconds after 30 minutes
Summary

- Cache-to-storage ratios have dropped significantly
 - 1991: IBM 3990: 256MB cache / 20GB storage → 1.3%
 - Today: 64GB cache / tens of TB storage → less than 0.1%
- Flash memory is a great opportunity to close the gap
 - Potentially huge impact in performance
- New challenges requiring new ways of thinking
 - Less sophisticated algorithms but account for endurance
 - Huge metadata effect on warm-up, etc.

http://www-03.ibm.com/ibm/history/exhibits/storage/storage_3390.html
IBM XIV Storage Systems
http://www.xivstorage.com/

- Easy management
 - No more ILM
 - Less power higher density

- Superior performance
 - Optimal use of resources
 - Innovative cache architecture

- Superb reliability
 - 30-minutes rebuild time or less!
 - Innovative grid-based redundancy

- Powerful snapshotting
 - Instant snapshot creation
 - No performance overhead