Power Requirements for Multi-Bit Per Cell NAND Flash

Terry Grunzke
Micron Technology, Inc.
Agenda

- Technology differences in SLC, MLC-2, MLC-3, and MLC-4
- Power consumption considerations
- Summary
Technology Differences

- **SLC**
 - Single-level cell
 - One bit per cell
- **MLC**
 - Multi-level cell
 - Two bits per cell (MLC-2)
 - Three bits per cell (MLC-3)
 - Four bits per cell (MLC-4)
- **Endurance**
 - SLC typically 10–20 times better than MLC-2
 - MLC-2 is much better than MLC-3 and MLC-4
Technology Differences

- **Performance**
 - Significantly better performance with fewer bits per cell

- **Price**
 - SLC-based products greater than 2X the $/GB over MLC-2
 - Some cost advantages with more bits per cell
NAND Flash Cell Vt distributions

Population

SLC

Vt

MLC-2

Vt

MLC-3

Vt

MLC-4

Vt
Power Consumption Considerations

- Chip reduction for equal density
- Controller power considerations
- Higher program voltage
- Array operation
- Standby power
Chip Reduction for Equal Density Applications

- True that the same number of bits uses less space on silicon
- Does not necessarily result in fewer chips per system
 - Would require half densities for MLC-3
 - Yet to be seen for MLC-4
- Smaller die does mean possible lower bitline and tub capacitance, which should result in lower power consumption during precharge
Controller Power Consumption Considerations

- Tradeoffs in latency/bandwidth vs. power consumption
- Even if assume double number of gates, this amount will be minimal in relation to overall NAND read energy consumption
Higher wordline voltage required does not significantly contribute to overall program current draw

Capacitance of wordline is dwarfed by capacitance of bitlines
Longer Array Operation Times

- Much longer array operations will cause increased energy usage
- Similar peak and average power will be drawn during the array operations, but for a longer period due to requirement for finer Vt placement
- In system, performance vs. power consumption tradeoffs exist
Comparing Raw NAND

Joules per Gb

- SLC: Write Energy 2.01, Read Energy 5.01, Erase Energy 0.02
- MLC-2: Write Energy 4.9, Read Energy 5.12, Erase Energy 0.05
- MLC-3: Write Energy 5.29, Read Energy 0.05, Erase Energy 11.68
Standby Power Considerations

- Only active energy will be different for multi-bit per cell technology
- Standby power consumption will be the same
Summary

- MLC-3 and MLC-4 NAND Flash power consumption will be increased primarily due to the longer program times required.
- System design will require decisions for tradeoff on power consumption vs. performance.