
1 | ©2022 Flash Memory Summit. All Rights Reserved.

Improving Wear Leveling on Android Smartphones

Tejas Chopra

2 | ©2022 Flash Memory Summit. All Rights Reserved.

Agenda

- Background
- Android I/O stack
- Analysis of bottlenecks
- Proposed solutions
- Improvements
- Takeaways

3 | ©2022 Flash Memory Summit. All Rights Reserved.

About me

- Sr. Software Engineer, Netflix
- Apple, Samsung, Cadence, Box
- TedX Speaker

- Cloud computing
- Storage, Distributed Systems
- Blockchain, Web3, NFTs

- Advisor
- Nillion
- Dorado

- Adjunct Professor, UAT, AZ

4 | ©2022 Flash Memory Summit. All Rights Reserved.

Smartphones are ubiquitous

5 | ©2022 Flash Memory Summit. All Rights Reserved.

Storage IO is the bottleneck in performance

6 | ©2022 Flash Memory Summit. All Rights Reserved.

Android Platform

7 | ©2022 Flash Memory Summit. All Rights Reserved.

Studying common application patterns

8 | ©2022 Flash Memory Summit. All Rights Reserved.

Analyzing R/W profiles

9 | ©2022 Flash Memory Summit. All Rights Reserved.

Analyzing R/W profiles

10 | ©2022 Flash Memory Summit. All Rights Reserved.

Insert in SQLite DB

11 | ©2022 Flash Memory Summit. All Rights Reserved.

Insert in ext4

12 | ©2022 Flash Memory Summit. All Rights Reserved.

A single insert on Android

13 | ©2022 Flash Memory Summit. All Rights Reserved.

1 write = 9 eMMC writes

14 | ©2022 Flash Memory Summit. All Rights Reserved.

1: Choosing correct journaling mode

15 | ©2022 Flash Memory Summit. All Rights Reserved.

2: Choosing the right file system!

16 | ©2022 Flash Memory Summit. All Rights Reserved.

3: Using fdatasync()

17 | ©2022 Flash Memory Summit. All Rights Reserved.

4: Small random IO → Large Sequential IO

- Small, random IO is not ideal for flash
- Conve rt small random to large sequential

- Use a laye r of mapping
- Be tween two fdatasync() calls, collect the IOs and ‘sequentialize ’ them
- Write one single write to a sequential location
- Akin to Log structuring
- Deve lop a garbage collector to cleanup rewrite s

18 | ©2022 Flash Memory Summit. All Rights Reserved.

Design details

- Segment size: 1MiB (configurable)
- Log infinite, but disk finite
- Clean old segments to recover space
- Maintain segment liveness and sort it in MinPQ
- Read ‘M’ segments, and compact content in ‘N’ new segments
- Can tune auto cleaning frequency up or down - depending on the

application.

19 | ©2022 Flash Memory Summit. All Rights Reserved.

Results

20 | ©2022 Flash Memory Summit. All Rights Reserved.

Results

21 | ©2022 Flash Memory Summit. All Rights Reserved.

Takeaways

- Existing android io stack is not optimized for flash
- Journaling of journal leads to write amplification and impacts flash life
- Understanding SQLite and ext4 behavior helps us make better choice

- Choosing correct journaling mode (WAL)
- Choosing correct file system (XFS, F2FS)
- Replacing fsync with fdatasync
- Log structuring small random writes to get better performance

- Impact - ~1.5x-3x improvement in ops/sec
- Common applications such as Twitter/Facebook are much faster

22 | ©2022 Flash Memory Summit. All Rights Reserved.

Thank You!

https://www.linkedin.com/in/chopratejas
chopratejas@gmail.com
chopra_tejas

https://www.linkedin.com/in/chopratejas
mailto:chopratejas@gmail.com
https://www.twitter.com/chopra_tejas

23 | ©2022 Flash Memory Summit. All Rights Reserved.

References

- Mobibench software for performance analysis
- Design of log structured file system
- Understanding and analyzing F2FS
- Android I/O stack performance analysis
- Ext4 file system basics
- Understanding IO profile of common applications on Android

	Improving Wear Leveling on Android Smartphones
	Agenda
	About me
	Smartphones are ubiquitous
	Storage IO is the bottleneck in performance
	Android Platform
	Studying common application patterns
	Analyzing R/W profiles
	Analyzing R/W profiles
	Insert in SQLite DB
	Insert in ext4
	A single insert on Android
	1 write = 9 eMMC writes
	1: Choosing correct journaling mode
	2: Choosing the right file system!
	3: Using fdatasync()
	4: Small random IO → Large Sequential IO
	Design details
	Results
	Results
	Takeaways
	Thank You!

	References

