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Agenda

- Background
- Android I/O stack
- Analysis of bottlenecks
- Proposed solutions
- Improvements
- Takeaways



3 | ©2022 Flash Memory Summit. All Rights Reserved. 

About me

- Sr. Software Engineer, Netflix
- Apple, Samsung, Cadence, Box
- TedX Speaker

- Cloud computing
- Storage, Distributed Systems
- Blockchain, Web3, NFTs

- Advisor
- Nillion
- Dorado

- Adjunct Professor, UAT, AZ
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Smartphones are ubiquitous
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Storage IO is the bottleneck in performance
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Android Platform
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Studying common application patterns
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Analyzing R/W profiles
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Analyzing R/W profiles
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Insert in SQLite DB
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Insert in ext4
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A single insert on Android
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1 write = 9 eMMC writes
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1: Choosing correct journaling mode
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2: Choosing the right file system!
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3: Using fdatasync()
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4: Small random IO → Large Sequential IO

- Small, random IO is not ideal for flash
- Conve rt small random to large  sequential

- Use  a laye r of mapping
- Be tween two fdatasync() calls, collect the  IOs and ‘sequentialize ’ them
- Write  one  single  write  to a sequential location
- Akin to Log structuring
- Deve lop a garbage  collector to cleanup rewrite s
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Design details

- Segment size: 1MiB (configurable)
- Log infinite, but disk finite
- Clean old segments to recover space
- Maintain segment liveness and sort it in MinPQ
- Read ‘M’ segments, and compact content in ‘N’ new segments
- Can tune auto cleaning frequency up or down - depending on the 

application.
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Results
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Results
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Takeaways

- Existing android io stack is not optimized for flash
- Journaling of journal leads to write amplification and impacts flash life
- Understanding SQLite and ext4 behavior helps us make better choice

- Choosing correct journaling mode (WAL)
- Choosing correct file system (XFS, F2FS)
- Replacing fsync with fdatasync
- Log structuring small random writes to get better performance

- Impact - ~1.5x-3x improvement in ops/sec
- Common applications such as Twitter/Facebook are much faster 
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Thank You!

https://www.linkedin.com/in/chopratejas
chopratejas@gmail.com
chopra_tejas

https://www.linkedin.com/in/chopratejas
mailto:chopratejas@gmail.com
https://www.twitter.com/chopra_tejas
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References

- Mobibench software for performance analysis
- Design of log structured file system
- Understanding and analyzing F2FS
- Android I/O stack performance analysis
- Ext4 file system basics
- Understanding IO profile of common applications on Android
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