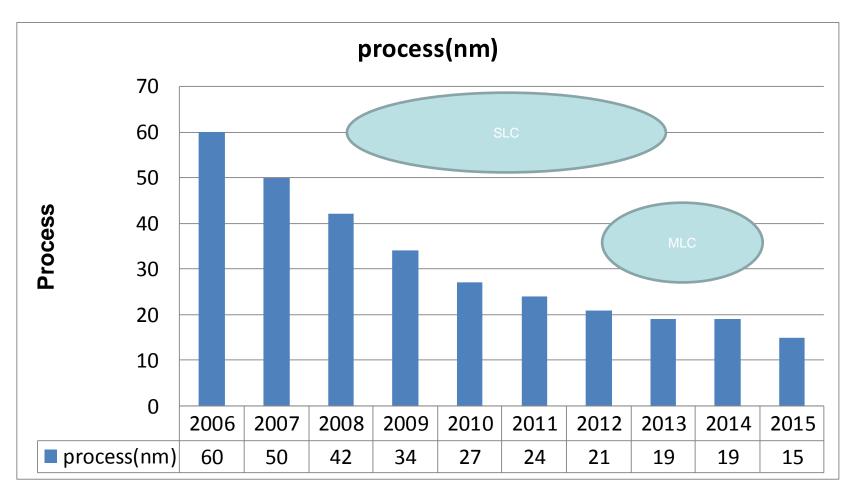


PCIe In Industrial Application

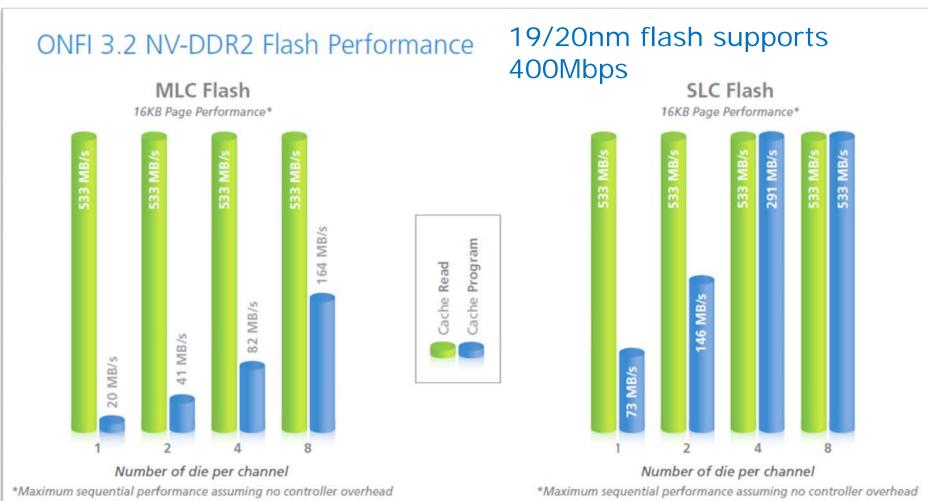

C.C. Wu Embedded Flash VP of innodisk

- Flash Storage for Industrial Applications
- Generations of Storage Interface
 - IDE
 - SATA
 - Other Interfaces
- PCIe Interface & Form factor
- Summary

Memory NAND Flash Process

Flash Memory Flash Performance

High Speed Performance:


DDR2 Interface

	ONFI 4.0			
SDR	NV-DDR	NV-DDR2	Preliminary	
Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	
50	DDR-200	DDR-400 (3.1) DDR-533 (3.2)	DDR-800 (NV-DDR3)	
1.8V/3.3V*	1.8V/3.3V*	1.8V, SSTL_18	1.2V (NV-DDR3)	

Source by www.onfi.org

Flash Memory Performance

It's time to move to the next-gen interface for SSDs.

Flash For Industrial Applications

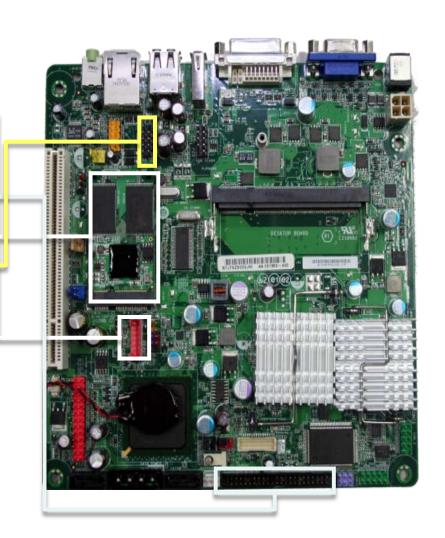
Many Different Interfaces Are **Used For Industrial Applications**

1.8" SATA SSD 2.5" SATA SSD

SATADOM mSATA, SATA Slim Cfast, CF-SATA

PATA CF/IDE DOM

USB Module



SD / micro SD

eMMC, uSSD

All Interfaces Will Remain In Demand For A Few More Years.

Industrial products

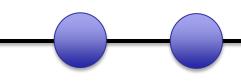
- have a lifespan of more than 5 years.
- cover a large range of different applications.
- Small form factors are required due to limited space.
- SATA is the dominant interface currently.

What is next?

SSD Form Factor Evolution, 1995 - 2003

CompactFlash Revision 1.0, 8.3 MByte/s (PIO mode 2) 9 9 0

2000



Jan 2003

2003

In 1999, SanDisk, Matsushita, and Toshiba agreed to develop and market the Secure Digital (SD) Memory Card Revision 1.0a was released on 7 January, 2003 150MB/s, 1.5G In 2003, PCI-SIG introduced PCIe 1.0a, with a per-lane data rate of 250 MB/s and a transfer rate of 2.5G

SSD Form Factor Evolution, 2006 - 2010

mSATA was announced by the SATA-IO on 21 September, 2009

SATA revision 2.0 - 3 Gbit/s -300 MB/s.

2006

SATA revision 3.0 - 6 Gb/s -600 MB/s.

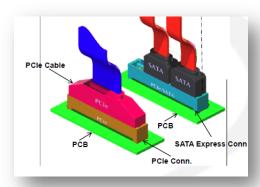
2009

500MB/s, 5GT/s PCI-SIG announced the availability of the PCI Express Base 2.0 specification on 15 January 2007

SATA Slim by **JEDEC**

PCIE Gen 3, 1GB/s, 8GT/s announced

SSD Form Factor Evolution, 2011 & 2012


M.2 (NGFF) By Intel

2011

el **2012**

The Evolution Continues...

SATA Express on 2011

Gen	Transfer Rate	Encoding	x1	x16
1.0	2.5GT/s	8b/10b	250MB/s	4GB/s
2.0	5.0GT/s	8b/10b	500MB/s	8GB/s
3.0	8.0GT/s	128b/130b	1GB/s	16GB/s
4.0	16GT/s		2GB/s	~32GB/s

Flash Memory PCIe performance

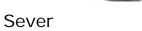
PCIe I/F	Gen 2 x 2 or Gen 3 x 1	Gen 2 x 4 or Gen 3 x 2	Gen 3 x 4
Theoretical Speed	1GB/s	2GB/s	4GB/s
SSD Real Speed	800~900 MB/s	1600~1800 MB/s	3200~3600 MB/s

PCIe Form Factor

Mini PCIe

52-pin card edge type connector

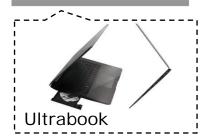
PCIe 3.0 x16: 16GB/s


PCIe SSD

PCI Express 3.0 ×2; 2GB/s

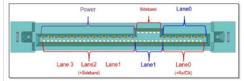
SATA Express

!! Enterprise serviceability


SFF 8639

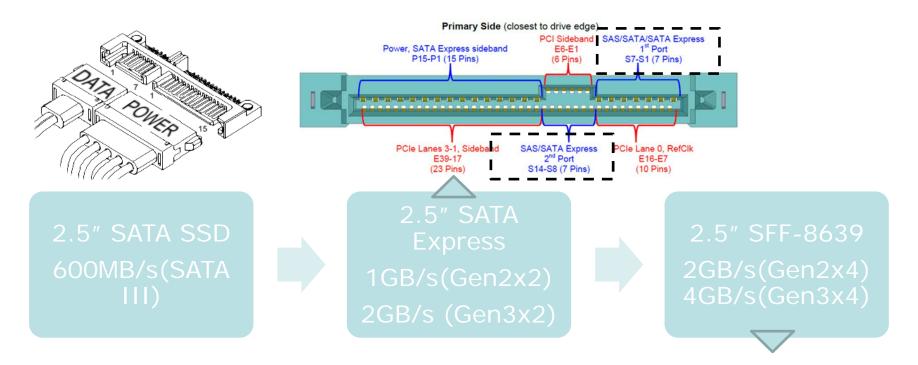
PCI Express 3.0 ×4; 4GB/s

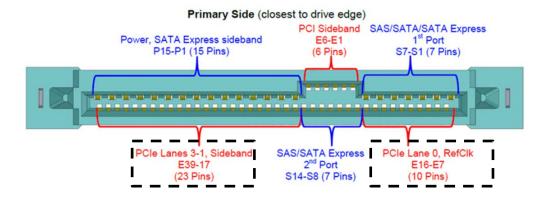
NGFF: 2242/2260/2280


M.2

2.5" SATA III Up to 600 MB/s

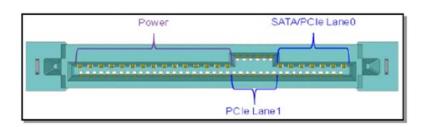
2.5" SATA Express Up to 1GB/s (Gen 2) Up to 2GB/s (Gen 3)

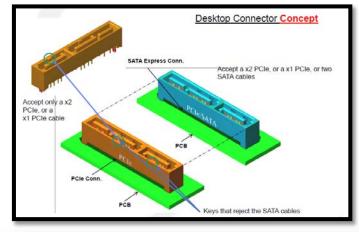

2.5" SFF-8639 Up to 2GB/s (Gen 2) Up to 4GB/s (Gen 3)

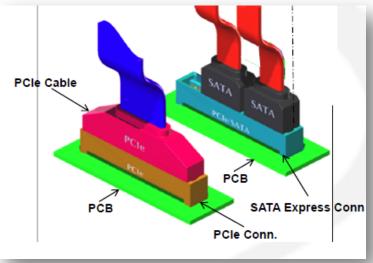


SFF-8639 Blue = SAS/SATA Red = Enterprise PCle

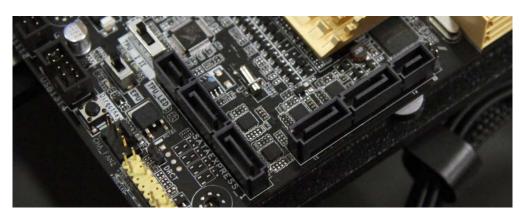
2.5" SSD Trend

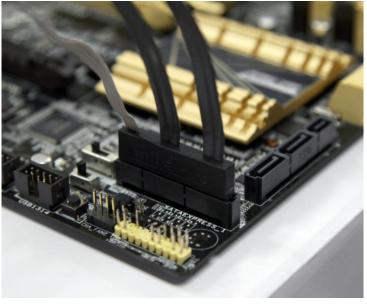



SATA Express(F1)

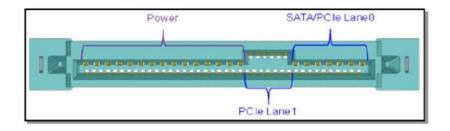

SATA Express is designed for Desktop

Applications

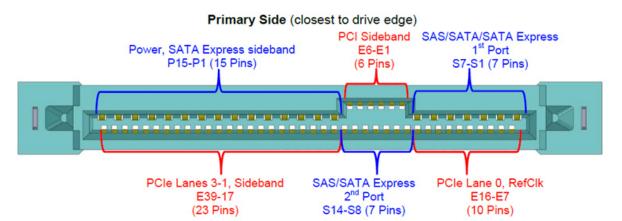




Source: https://www.sata-io.org/

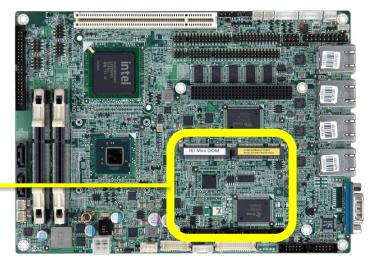


SATA Express Client SSD



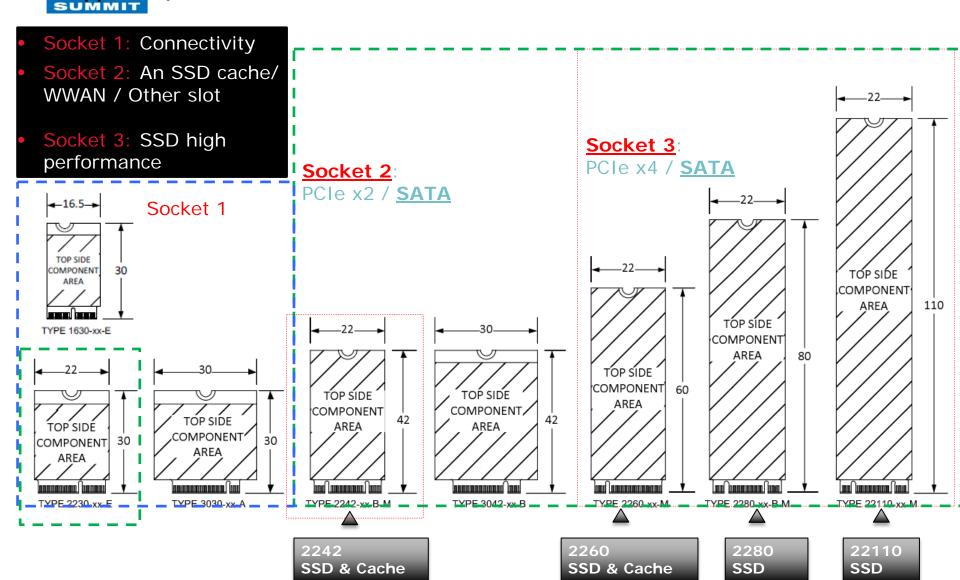
Trend: SFF-8639 Connector(F2)

- Enterprise backplane connector for 2.5" storage connects PCIe, SATA*, and SAS* devices
- SFF-8639: Supports 6 lanes, but only 4 lanes are used at one time
 - PCIe: 4 red lanes on CPU PCIe lanes
 - SATA & SAS: 2 blue lanes on HBA/RAID controller or chipset
- Compatible with SATA and SAS devices


Flash Memory miniPCle(F4)

Over the years, module form factors and interface protocols have evolved and changed along with chipsets, but most industrial manufacturers are still using the miniPCIe form factor for various modules, including wireless devices, Bluetooth, some communication devices, and even for storage— mSATA.

The miniPCIe form factor is suited for space-constrained applications and swapability (swapping different miniPCIe modules could bring more benefit in flexibility of product matrix).



M.2 (NGFF)(F5)

Flashingth Make three sockets available for Notebooks, Ultrabooks™ & Tablets Support Threefaces: PCIe/USB/SDIO/UART/PCM/I2C/SATA

PCIe Interface SSD

	Mini PCIe	M.2	SFF-8639		PCIe SSD(Card)
			2.5" SATA Express SSD	2.5" PCIe SSD	
Specification	PCI-SIG	PCI-SIG M.2	SATA Express	SFF-8639	PCI-Express
Dimensions	(L) 50.8mm (W) 29.8mm (H) 4.4mm	2280/22110 2242/2260 mm	(L) 100.45 mm (W) 69.85 mm (H) 5/7mm	(L) 100.45 mm (W) 69.85 mm (H) 7mm	(L) 176.65mm (W)111.15mm
Speed(Gen3)	1GT/s	1GTx4=4GT/s	1Gtx2=2GT/s	1GTx4=4GT/s	1GTx16=16GT/s
Lanes	1	1,2,4	1,2	1,2,4	1-16

Summary

More on the PCIe Interface:

- SFF-8639 will be 2.5" connector
- M.2 will become the next popular form factor for industrial application.
- SATA Express is designed for desktop PC now, and industrial field may use it in near future.
- PCIe SSD (Card) is still used for high IOPS server applications

innodisk

Innodisk Corporation | 宜鼎國際股份有限公司

設計 服務 品質 交期 Design Service Quality Delivery

