Building efficient RAID-5 systems across SSDs at the FTL Layer

Xueshi Yang
CEO & Co-founder
Shannon Systems
Outlines

• Motivation
• Conventional RAID5 architecture drawbacks
• Building efficient RAID5 systems across SSDs at the FTL layer
• Conclusions
Motivation

• SSDs provides sufficient IOPS, but RAID-5 is still commonly employed for
 • Higher capacity (e.g., 8 to 12 drives)
 • Increased bandwidth
 • Improved reliability

• Issues:
 • RAID-5 write hole
 • Performance loss due to partial-stripe writes
 • Performance degrades due to performance fluctuation between SSDs
Conventional RAID-5

- Rotational parity, resilient to one SSD failure

- Without parity cache, random writes result in
 - Write amplification >>2
 - Faster wear out
 - Write holes
Random writes in RAID-5

• 4K random write steps -1

Write amplification occurs when Drive-A is full
Random writes in RAID-5

- 4K random write steps -2

A B C

4KB parity reads
Random writes in RAID-5

- 4K random write steps -3

Computes updated parity
Random writes in RAID-5

- 4K random write steps -4
Performance issues of RAID-5

- Random write performance does not scale linearly to # of SSDs

8 Drives (RAID-5) vs 4 Drives (RAID-5)
Dynamic mapping of LBA and PBA in SSDs

- Conventional RAID controller treats SSD just as another type of HDD
- SSDs are fundamentally different from HDDs viz. dynamic association of LBAs to PBAs
The invariants in SSDs

• In SSDs, the invariants are Physical Block Addresses (PBAs)

• RAID could be built upon the invariants of PBAs

• Off-loading FTL from SSDs facilitates RAID construction on PBAs
Off-loading FTL from SSDs

• Off-loading FTL from SSDs
• Unified FTL and RAID layer solves the issues with conventional RAID.

Conventional RAID5 of SSDs

The new RAID5 architecture
RAID construction at FTL (1)

- **Initial state**
 - Numbers are LBAs
 - Blocks are PBAs
RAID construction at FTL (2)

- Next state
 - Numbers are LBAs
 - Blocks are PBAs

```
<table>
<thead>
<tr>
<th>SSD Unit 0</th>
<th>SSD Unit 1</th>
<th>SSD Unit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>P=0+1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>P=4+3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>P=1+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P=2+3</td>
</tr>
</tbody>
</table>
```
Advantages

- Joint FTL and RAID-5 layer provide better system efficiency:
 - Global GC and wear leveling
 - Random small writes WAF can be less than 2
 - No more read-modify-write
 - No partial parity stripes write performance loss
 - Write hole can be gracefully mitigated by partial parity writes or filling dummy data.
Hardware accelerated parity calculation

- FTL and RAID are co-located
- FTL are primarily based on software
- Parity computation can be hardware accelerated by seeding raw data to the hardware controller.
 - Parity computation are carried out in hardware
 - Parity are subsequently written out to the parity “SSD”
Shannon Direct-IO™ SFF-8639 PCIe Flash

- Natively PCIe, supports hot plug
- Built in cross-drive RAID with hardware acceleration
- Superior sustained 4KB random write performance
About Shannon Systems

- Shannon Systems is the leading provider of PCIe Flash and associated flash systems in the China market.

- Come to visit us at booth #700-702
 - SFF-8639 PCIe Flash Drive
 - 6.4TB PCIe Flash