

Real-World Performance of Flash-Based Storage Systems Session 104-C

Dennis Martin, President, Demartek

- About Demartek
- ◆ Enterprise Datacenter Environments
- Metrics Basics
- Real-World Workloads
- ♦ Performance Results: Various Flash Technologies

Demartek Services Video

Click to view this one minute video (available in 720p and 1080p)

Demartek YouTube Channel: http://www.youtube.com/user/Demartek/videos

- ♦ Industry Analysis and ISO 17025 accredited test lab
- Lab includes enterprise servers, networking & storage
- ♦ We prefer to run real-world applications to test servers and storage solutions
- ◆ Demartek is an EPA-recognized test lab for ENERGY STAR Data Center Storage testing
- **♦ Website:** <u>www.demartek.com</u>

Enterprise Datacenter Environments

- ◆ Typically support a large number of users and are responsible for many business applications
- ◆ Often have specialists for applications, operating environments, networking and storage systems
- Have a large amount of equipment including servers, networking and storage gear
 - ♦ Multiple types and generations within each category
- ♦ Reliability, Availability and Serviceability (RAS)
- ◆ Complex systems working together

Enterprise Storage Architectures

- ► Flash Can Be Deployed In Any of These
- Direct Attach Storage (DAS)
 - ◆ Storage controlled by a single server: inside the server or directly connected to the server ("server-side")
 - ♦ Block storage devices
- Network Attached Storage (NAS)
 - ♦ File server that sends/receives files from network clients
- ◆ Storage Area Network (SAN)
 - ◆ Delivers shared *block* storage over a storage network

Demartek Tutorial Videos

♦ Short (3-4) minute videos

Storage Basics

Storage

http://www.demartek.com/Demartek_Tutorial_Video.html

Interface vs. Storage Device Speeds

- Interface speeds are generally measured in bits per second, such as megabits per second (Mbps) or gigabits per second (Gbps).
 - ◆ Lowercase "b"
 - ◆ Applies to Ethernet, Fibre Channel, SATA, etc.
- ♦ Storage device and system speeds are generally measured in bytes per second, such as megabytes per second (MBps) or gigabytes per second (GBps).
 - ◆ Uppercase "B"
 - Applies to PCIe

Storage Interface Types

- ► Some for devices, others between systems
- **♦** Ethernet
- **♦** Fibre Channel (FC) and FC over Ethernet (FCoE)
- Infiniband
- ♦ PCle and NVMe
- **♦** SAS
- **♦** SATA
- **♦** Thunderbolt
- **♦ USB**

Storage Interface Comparison

STORAGE INTERFACE COMPARISON STORAGE INTERFACE COMPARISON SCSIED FIBRES PRESS PRESS SOID FROM SOID FROM

◆ PCI Express® (PCIe®)

Connector Types

Cables: Fiber Optics and Copper

Roadmaps

- **♦ Downloadable interactive PDF version now available**
- Search engine: "storage interface comparison"
- www.demartek.com/Demartek_Interface_Comparison.html

Key Storage Metrics ► IOPS & Bandwidth

- **♦ IOPS**
 - ♦ Number of Input/Output (I/O) requests per second
- ♦ Bandwidth
 - **♦** Measure of bytes transferred per second (MBps or GBps)
- Read and Write metrics are often reported separately

Key Storage Metrics

Latency

- ◆ Latency
 - ♦ Response time or round-trip time, generally measured in milliseconds (ms) or microseconds (µs)
 - **♦ Sometimes measured as seconds per transfer**
 - **♦** Time is the numerator, therefore lower latency is faster
- ◆ Latency is becoming an increasingly important metric for many real-world applications
- Flash storage provides much lower latency than hard disk or tape technologies

Real-World Workloads

- ◆ Use variable levels of compute, memory and Input/Output (I/O) resources as the work progresses
- ◆ Typically use multiple block sizes and queue depths for I/O requests, depending on the workload
- Many applications capture their own metrics such as database transactions per second, etc.
- Operating systems can track physical and logical I/O metrics

Real-World Storage Workload Types

- **♦** Transactional (Random)
 - **♦** Generally smaller block sizes (4KB, 8KB, 16KB, etc.)
 - ◆ Emphasis on the number of I/O's per second (IOPS)
- Streaming (Sequential)
 - ♦ Generally larger block sizes (64KB, 256KB, 1MB, etc.)
 - Emphasis on bandwidth or throughput measured in Megabytes per second (MBps)
- Latency is affected differently by different workload types

Performance Results

Flash Web Server Test

- Read-intensive web server workload
 - ♦ 40GB web server data
 - ♦ 1.48 million files
 - ♦ 80,000 unique HTML text pages
 - **◆ 1.4** million graphic images (JPEG and PNG)
 - ♦ Randomly referenced all pages (1 HTML text + 3 images) approximately evenly over a 90-minute test period
- ♦ Storage: 6 HDD vs. 24 HDD vs. 1 PCle SSD
 - ♦ HDDs: 73GB 15K RPM SAS, RAID10
 - ♦ PCIe SSD: 300GB

Total Web Pages

Average Time to First Byte

Web Server Power Consumption

Web Server Average CPU Utilization

VMmark Virtualization Tests

- ◆ A VMmark "tile" includes these workloads plus vMotion
- Multiple tiles
 are configured
 to stress test
 the storage

VMmark Configuration

- **♦** Storage Infrastructure
 - ◆ All-flash array, Fibre Channel SAN attach
 - ♦ HDD array (45 HDDs), Fibre Channel SAN attach
 - **♦ 16Gb Fibre Channel switch**
- **♦ Test Cluster Servers**
 - ♦ Qty. 1: Intel Xeon E5-2690, 2.9 GHz, 16 total cores, 32 logical processors, 192 GB RAM, 16GFC HBAs
 - Qty. 2: Intel Xeon E5-2690 v2, 3.0 GHz, 20 total cores,
 40 logical processors, 256 GB RAM, 16GFC HBAs
- Two other servers used for VMmark clients
- **♦ 10GbE** used for network connections

VMmark2 Scores

VMmark CPU Utilization

Bootstorm – 90 Virtual Desktops

- Booting 90 desktop virtual machines using one physical server
 - ♦ Server: 4x Intel Xeon E5-4650, 2.7 GHz, 32 total cores, 64 logical processors, 256 GB RAM
 - ♦ Hypervisor: ESXi 5.1
 - ◆ Desktop VMs: Windows 7 Ultimate, 1 vCPU, 2GB RAM
- ◆ Use different storage for boot images and VMs
 - ♦ Internal HDD: 15x 15K 136GB SAS, RAIDO
 - ◆ External HDD: 12x 15K 300GB SAS, RAIDO, 8Gb FC SAN
 - ◆ External SSD: 24x 100GB SSD, RAID0, 8Gb FC SAN

ory VMs in Queue

Bootstorm: Latency

Bootstorm: CPU Utilization

Bootstorm: Memory Utilization

Bootstorm: Other Technical Results

- ♦ Internal HDD: RAID controller DRAM cache amounts
- ♦ External HDD
 - Read cache (Write-through) vs. Read/Write cache (Write-back)
 - ◆ FC HBA queue depth settings
- ◆ External SSD: FC HBA queue depth settings
- ♦ These data are available in the full report on the Demartek website
 - **♦** Search engine: "Demartek bootstorm report"

Database Workload Latencies

- Different workloads have different effects on latency, even for all-flash arrays
- **♦** Same all-flash array with two different workloads:
 - ♦ Microsoft SQL Server Online Brokerage OLTP workload
 - ♦ Microsoft SQL Server Data Warehousing (DW) workload

OLTP Workload Latency

Data Warehousing Latency

Interface Speed Differences

- All-flash array with decision support database workload
 - ♦ Fixed amount of work, faster configuration finishes sooner
- ◆ Storage: All-flash array with 4x 8GFC host ports
- Server:
 - ◆ 2x Intel Xeon E5-2690, 2.9 GHz, 16 total cores, 32 logical processors, 32GB RAM
 - ◆ Dual-port 8GFC HBA max. bandwidth: 1600 MBps
 - ◆ Dual-port 16GFC HBA max. bandwidth: 3200 MBps

Bandwidth: 16GFC vs. 8GFC

Latency: 16GFC vs. 8GFC

NVM Express (NVMe)

- Scalable host controller interface designed for enterprise and client systems that use PCI Express SSDs
- Designed with Flash memory and technologies coming after Flash memory in mind (non-volatile memory)
- Much faster (lower latency) software stack than existing storage stacks such as SAS and SATA
- ◆ Other NVMe sessions here at the Flash Memory Summit
- **♦ Additional comments and explanation:**www.demartek.com/Demartek_Comments_IDF2013_and_NVMe.html

NVM Express (NVMe)

- NVMe SSDs installed in server
 - ♦ Two different brands, shipping now
 - ♦ No hardware adapter, connects via PCle (SFF-8639) backplane
- ◆ Two database workloads
 - ♦ OLTP: Four-drive (2.5-inch) NVMe
 - ◆ Data Warehousing: Single-drive (2.5-inch) NVMe
- Currently running additional tests, more results to be published

NVMe Configuration

♦ Server:

- ◆ 4x Intel Xeon E7-4880 v2, 2.5 GHz, 60 cores, 120 logical processors
- **♦ 416 GB RAM**
- **♦** SFF-8639 backplanes (NVMe compatible)
- Windows Server 2012 R2
- ♦ In-box NVMe drivers
- ♦ Microsoft SQL Server 2012
- Four-drive configuration using Windows spanned volume

NVMe 4-drive OLTP SQL trans./sec

NVMe 4-drive OLTP IOPS

NVMe 4-drive I/O Blocksize

NVMe 4-drive OLTP Bandwidth

NVMe 4-drive OLTP Latency

NVMe 1-drive DW IOPS

NVMe 1-drive DW Bandwidth

NVMe 1-drive DW Latency

Flash Storage Happy Side Effects 1

- Flash storage can drive up host CPU utilization
 - ◆ This will affect physical-to-virtual machine ratios
 - ♦ For some workloads, fewer servers are needed to accomplish the same amount of work when configured with flash storage
- ◆ Flash storage will expose new bottlenecks
 - ◆ Faster network and storage interfaces, including 10Gb Ethernet, 16Gb Fibre Channel, NVMe, etc. are needed
 - Flash storage and high-speed networks were made for each other

Flash Storage Happy Side Effects 2

- Flash storage matches the performance of HDD storage while consuming less power and rackspace
 - ◆ Today's drive form factor enterprise SSDs exceed the capacity of today's enterprise HDDs (10K & 15K RPM)
 - **♦ 2.5-inch SSDs are very popular today**
 - **♦** Expect more dense SSD solutions in the enterprise

Flash Storage Happy Side Effects 3

- ◆ SSD marketplace is splitting into write-intensive, mixed read-write and read-intensive devices
- Expect SSDs to become the default choice for boot drives in servers and desktops
 - ♦ Will use read-intensive (lower number of write) drives
 - ♦ Makes server boot faster and apps run faster
 - It's like getting a new server or desktop and can extend the life of the server or desktop computer
 - ♦ We've been doing this since 2010 http://www.demartek.com/Demartek_SSD_production.html

Demartek Free Resources

- ◆ Demartek SSD Deployment Guide www.demartek.com/Demartek_SSD_Deployment_Guide.html
- ◆ Demartek commentary: "Horses, Buggies and SSDs" www.demartek.com/Demartek_Horses_Buggies_SSDs_Commentary.html
- ◆ Demartek comments on IDF2013 & NVMe www.demartek.com/Demartek_Comments_IDF2013_and_NVMe.html
- ◆ Demartek Video Library http://www.demartek.com/Demartek_Video_Library.html
- **♦** Demartek FC Zone <u>www.demartek.com/FC</u>
- **♦** Demartek iSCSI Zone www.demartek.com/iSCSI
- ◆ Demartek SSD Zone <u>www.demartek.com/SSD</u>

Performance reports,
Deployment Guides and
commentary available
for free download.

Free Monthly Newsletter

Demartek publishes a free monthly newsletter, *Demartek Lab Notes*, highlighting recent reports, articles and commentary.

Look for the newsletter sign-up at: www.demartek.com/Newsletter

Dennis Martin, President dennis@demartek.com www.linkedin.com/in/dennismartin

(303) 940-7575

www.demartek.com

http://twitter.com/Demartek

www.youtube.com/Demartek

Skype: Demartek

To learn more about Demartek:

- Download the Aurasma App (Android/iPhone)
- Search and follow "Demartek"
- View image below with viewfinder.

*also on the back of Dennis' business card

