Real-World Performance of Flash-Based Storage Systems
Session 104-C

Dennis Martin, President, Demartek
Agenda

- About Demartek
- Enterprise Datacenter Environments
- Metrics Basics
- Real-World Workloads
- Performance Results: Various Flash Technologies
Demartek Services Video

Click to view this one minute video
(available in 720p and 1080p)

Demartek YouTube Channel:
http://www.youtube.com/user/Demartek/videos
Industry Analysis and ISO 17025 accredited test lab

Lab includes enterprise servers, networking & storage

We prefer to run real-world applications to test servers and storage solutions

Demartek is an EPA-recognized test lab for ENERGY STAR Data Center Storage testing

Website: www.demartek.com
Enterprise Datacenter Environments

♦ Typically support a large number of users and are responsible for many business applications

♦ Often have specialists for applications, operating environments, networking and storage systems

♦ Have a large amount of equipment including servers, networking and storage gear
 ♦ Multiple types and generations within each category

♦ Reliability, Availability and Serviceability (RAS)

♦ Complex systems working together
Enterprise Storage Architectures

Flash Can Be Deployed In Any of These

♦ Direct Attach Storage (DAS)
 ♦ Storage controlled by a single server: inside the server or directly connected to the server (“server-side”)
 ♦ *Block* storage devices

♦ Network Attached Storage (NAS)
 ♦ File server that sends/receives *files* from network clients

♦ Storage Area Network (SAN)
 ♦ Delivers shared *block* storage over a storage network
♦ Short (3-4) minute videos

♦ Storage Basics

Interface vs. Storage Device Speeds

♦ Interface speeds are generally measured in bits per second, such as megabits per second (Mbps) or gigabits per second (Gbps).
 ♦ Lowercase “b”
 ♦ Applies to Ethernet, Fibre Channel, SATA, etc.

♦ Storage device and system speeds are generally measured in bytes per second, such as megabytes per second (MBps) or gigabytes per second (GBps).
 ♦ Uppercase “B”
 ♦ Applies to PCIe
Storage Interface Types

- Some for devices, others between systems

- Ethernet
- Fibre Channel (FC) and FC over Ethernet (FCoE)
- Infiniband
- PCIe and NVMe
- SAS
- SATA
- Thunderbolt
- USB
Storage Interface Comparison

Contents

♦ Acronyms
♦ Storage Networking Interface Comparison Table
♦ Transfer Rate, Bits vs. Bytes, and Encoding Schemes
♦ History
♦ Roadmaps
♦ Cables: Fiber Optics and Copper
♦ Connector Types
♦ PCI Express® (PCIe®)

♦ Downloadable interactive PDF version now available
♦ Search engine: “storage interface comparison”
♦ www.demartek.com/Demartek_Interface_Comparison.html
Key Storage Metrics

▶ IOPS & Bandwidth

♦ IOPS
 ♦ Number of Input/Output (I/O) requests per second

♦ Bandwidth
 ♦ Measure of bytes transferred per second (MBps or GBps)

♦ Read and Write metrics are often reported separately
Key Storage Metrics

- Latency

- Latency
 - Response time or round-trip time, generally measured in milliseconds (ms) or microseconds (µs)
 - Sometimes measured as seconds per transfer
 - Time is the numerator, therefore lower latency is faster

- Latency is becoming an increasingly important metric for many real-world applications

- Flash storage provides much lower latency than hard disk or tape technologies
Real-World Workloads

♦ Use variable levels of compute, memory and Input/Output (I/O) resources as the work progresses

♦ Typically use multiple block sizes and queue depths for I/O requests, depending on the workload

♦ Many applications capture their own metrics such as database transactions per second, etc.

♦ Operating systems can track physical and logical I/O metrics
Real-World Storage Workload Types

♦ Transactional (Random)
 ♦ Generally smaller block sizes (4KB, 8KB, 16KB, etc.)
 ♦ Emphasis on the number of I/O’s per second (IOPS)

♦ Streaming (Sequential)
 ♦ Generally larger block sizes (64KB, 256KB, 1MB, etc.)
 ♦ Emphasis on bandwidth or throughput measured in Megabytes per second (MBps)

♦ Latency is affected differently by different workload types
Performance Results
Web Server Test

- Read-intensive web server workload
 - 40GB web server data
 - 1.48 million files
 - 80,000 unique HTML text pages
 - 1.4 million graphic images (JPEG and PNG)
 - Randomly referenced all pages (1 HTML text + 3 images) approximately evenly over a 90-minute test period

- Storage: 6 HDD vs. 24 HDD vs. 1 PCIe SSD
 - HDDs: 73GB 15K RPM SAS, RAID10
 - PCIe SSD: 300GB
Average Time to First Byte

(Lower is better)

PCIe SSD: 0.0033 sec
3.6x faster than HDD-24
16.9x faster than HDD-6
Web Server Power Consumption

Web server test load running

- HDD-6
- HDD-24
- PCIe SSD
- Server only, idle system

Santa Clara, CA
August 2014
Web Server Average CPU Utilization

- HDD-24: 3.47%
- PCIe SSD: 51.08%
A VMmark “tile” includes these workloads plus vMotion

Multiple tiles are configured to stress test the storage
Storage Infrastructure
- All-flash array, Fibre Channel SAN attach
- HDD array (45 HDDs), Fibre Channel SAN attach
- 16Gb Fibre Channel switch

Test Cluster Servers
- Qty. 1: Intel Xeon E5-2690, 2.9 GHz, 16 total cores, 32 logical processors, 192 GB RAM, 16GFC HBAs
- Qty. 2: Intel Xeon E5-2690 v2, 3.0 GHz, 20 total cores, 40 logical processors, 256 GB RAM, 16GFC HBAs

Two other servers used for VMmark clients

10GbE used for network connections
VMmark2 Scores

VMmark2: All-Flash array vs. HDD (Unreviewed)

R² = 0.9966

Normalized Score

Number of Tiles

2 4 6 8 10 12

All-flash Array
45 HDD (Non-Compliant QoS)
VMmark CPU Utilization

Average ESXi Server CPU Usage

- All-flash: 12 Tiles
- All-flash: 10 Tiles
- HDD: 10 Tiles
Bootstorm – 90 Virtual Desktops

- Booting 90 desktop virtual machines using one physical server
 - Server: 4x Intel Xeon E5-4650, 2.7 GHz, 32 total cores, 64 logical processors, 256 GB RAM
 - Hypervisor: ESXi 5.1
 - Desktop VMs: Windows 7 Ultimate, 1 vCPU, 2GB RAM

- Use different storage for boot images and VMs
 - Internal HDD: 15x 15K 136GB SAS, RAID0
 - External HDD: 12x 15K 300GB SAS, RAID0, 8Gb FC SAN
 - External SSD: 24x 100GB SSD, RAID0, 8Gb FC SAN
VMs Booted

Bootstorm: VMs Booted

All 90 VMs booted when line ends

Time (hh:mm:ss)

VeMs Booted

Fibre Channel SSD Fibre Channel HDD Internal HDD
VMs in Queue

Bootstorm: VMs in Queue

Time (hh:mm:ss)

VMs in Queue

Fibre Channel SSD
Fibre Channel HDD
Internal HDD

Santa Clara, CA
August 2014
Bootstorm: Other Technical Results

♦ Internal HDD: RAID controller DRAM cache amounts

♦ External HDD
 ♦ Read cache (Write-through) vs. Read/Write cache (Write-back)
 ♦ FC HBA queue depth settings

♦ External SSD: FC HBA queue depth settings

♦ These data are available in the full report on the Demartek website
 ♦ Search engine: “Demartek bootstorm report”
Different workloads have different effects on latency, even for all-flash arrays

Same all-flash array with two different workloads:
- Microsoft SQL Server Online Brokerage OLTP workload
- Microsoft SQL Server Data Warehousing (DW) workload
OLTP Workload Latency

Latency for All-flash Array with OLTP Workload

Santa Clara, CA
August 2014
Data Warehousing Latency

Latency for All-flash Array with DW Workload

Duration (seconds)

Milliseconds

DW Workload

Linear Average
Interface Speed Differences

♦ All-flash array with decision support database workload
 ♦ Fixed amount of work, faster configuration finishes sooner

♦ Storage: All-flash array with 4x 8GFC host ports

♦ Server:
 ♦ 2x Intel Xeon E5-2690, 2.9 GHz, 16 total cores, 32 logical processors, 32GB RAM
 ♦ Dual-port 8GFC HBA – max. bandwidth: 1600 MBps
 ♦ Dual-port 16GFC HBA – max. bandwidth: 3200 MBps
Bandwidth: 16GFC vs. 8GFC

Decision Support Bandwidth per Adapter - 6 Users
(Dual FC HBA port: 16 Gb vs. 8 Gb)

16 Gb workload completed 26% faster than 8 Gb

Flat tops indicate throttling by adapter

2 Port 16Gb
2 Port 8Gb

Duration (seconds)

MB/s
Latency: 16GFC vs. 8GFC

Decision Support Latencies per Adapter - 6 Users
(Dual FC HBA port: 16 Gb vs. 8 Gb)

Average Latencies for 16 Gb less than half of 8 Gb
(lower is better)
NVM Express (NVMe)

♦ Scalable host controller interface designed for enterprise and client systems that use PCI Express SSDs

♦ Designed with Flash memory and technologies coming after Flash memory in mind (non-volatile memory)

♦ Much faster (lower latency) software stack than existing storage stacks such as SAS and SATA

♦ Other NVMe sessions here at the Flash Memory Summit

♦ Additional comments and explanation: www.demartek.com/Demartek_Comments_IDF2013_and_NVMe.html
NVM Express (NVMe)

♦ NVMe SSDs installed in server
 ♦ Two different brands, shipping now
 ♦ No hardware adapter, connects via PCIe (SFF-8639) backplane

♦ Two database workloads
 ♦ OLTP: Four-drive (2.5-inch) NVMe
 ♦ Data Warehousing: Single-drive (2.5-inch) NVMe

♦ Currently running additional tests, more results to be published
NVMe Configuration

♦ Server:
 ♦ 4x Intel Xeon E7-4880 v2, 2.5 GHz, 60 cores, 120 logical processors
 ♦ 416 GB RAM
 ♦ SFF-8639 backplanes (NVMe compatible)
 ♦ Windows Server 2012 R2
 ♦ In-box NVMe drivers
 ♦ Microsoft SQL Server 2012

♦ Four-drive configuration using Windows spanned volume
NVMe 4-drive OLTP IOPS

OLTP Workload IOPS
4-drive NVMe

Read IOPS
Write IOPS
OLTP Workload I/O Blocksize

4-drive NVMe

Blocksize (kB)

Time (hh:mm:ss)

0:00:00
0:03:43
0:07:28
0:11:09
0:14:52
0:18:35
0:22:18
0:26:01
0:29:44
0:33:27
0:37:10
0:40:53
0:44:36
0:48:19
0:52:02
0:55:45
1:00:38
1:04:21
1:08:04
1:11:47
1:15:30
1:19:13
1:23:06
1:26:50
1:30:33
1:34:17
1:38:00
1:41:44
1:45:27
1:49:11
2:02:54

Read Blocksize
Write Blocksize
NVMe 4-drive OLTP Bandwidth

OLTP Workload Bandwidth
4-drive NVMe

Bytes per Second

Time (hh:mm:ss)

Santa Clara, CA
August 2014
NVMe 4-drive OLTP Latency

OLTP Workload Latency
4-drive NVMe

Latency

Linear Average
NVMe 1-drive DW IOPS

Data Warehousing IOPS
Single NVMe drive

Time (hh:mm:ss)

IOPS
Data Warehousing Bandwidth
Single NVMe drive
NVMe 1-drive DW Latency

Data Warehousing Latency
Single NVMe drive
Flash storage can drive up host CPU utilization

- This will affect physical-to-virtual machine ratios
- For some workloads, fewer servers are needed to accomplish the same amount of work when configured with flash storage

Flash storage will expose new bottlenecks

- Faster network and storage interfaces, including 10Gb Ethernet, 16Gb Fibre Channel, NVMe, etc. are needed
- Flash storage and high-speed networks were made for each other
Flash storage matches the performance of HDD storage while consuming less power and rackspace.

- Today’s drive form factor enterprise SSDs exceed the capacity of today’s enterprise HDDs (10K & 15K RPM)
- 2.5-inch SSDs are very popular today
- Expect more dense SSD solutions in the enterprise
SSD marketplace is splitting into write-intensive, mixed read-write and read-intensive devices

Expect SSDs to become the default choice for boot drives in servers and desktops

- Will use read-intensive (lower number of write) drives
- Makes server boot faster and apps run faster
- It’s like getting a new server or desktop and can extend the life of the server or desktop computer

We’ve been doing this since 2010

Demartek Free Resources

- Demartek SSD Deployment Guide

- Demartek commentary: “Horses, Buggies and SSDs”
 www.demartek.com/Demartek_Horses_Buggies_SSDs_Commentary.html

- Demartek comments on IDF2013 & NVMe
 www.demartek.com/Demartek_Comments_IDF2013_and_NVMe.html

- Demartek FC Zone – www.demartek.com/FC

- Demartek iSCSI Zone – www.demartek.com/iSCSI

- Demartek SSD Zone – www.demartek.com/SSD
Demartek publishes a free monthly newsletter, *Demartek Lab Notes*, highlighting recent reports, articles and commentary.

Look for the newsletter sign-up at: www.demartek.com/Newsletter
Thank You!

Dennis Martin, President
dennis@demartek.com
www.linkedin.com/in/dennismartin

Demartek
(303) 940-7575
www.demartek.com
http://twitter.com/Demartek
www.youtube.com/Demartek
Skype: Demartek

To learn more about Demartek:
◆ Download the Aurasma App (Android/iPhone)
◆ Search and follow “Demartek”
◆ View image below with viewfinder.

*also on the back of Dennis’ business card