

Enabling 3D NAND Devices of the Future

The Necessity for a Memory Modem[™] in 3D Memories

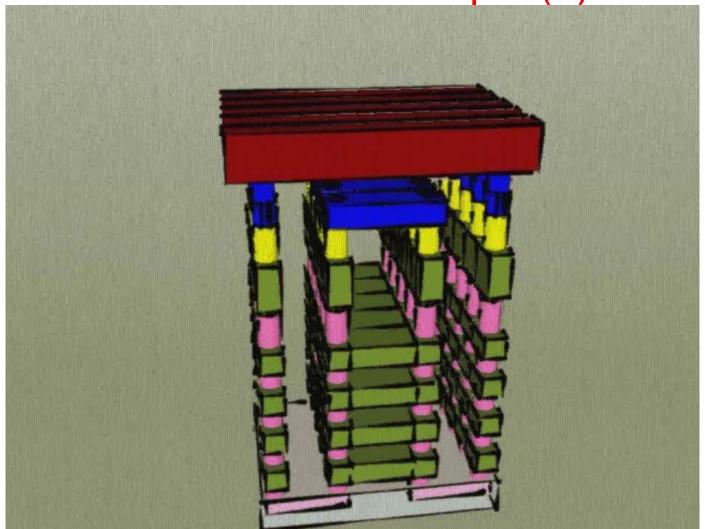
Hanan Weingarten

DensBits Technologies

- 2D Vs 3D NAND
- 3D NAND How Does It Work
 - p-BiCS example
- 3D NAND (unique) Considerations
 - Inter-Cell / Block Interference
 - TLC on 3D NAND
 - Scaling
- Summary

2D NAND limitations below 1xnm:

- Lithographic limitations:
 - Additional scaling requires quad-patterning, Ultra-violet
- Reliability limitations (retention, read and program disturbs):
 - Channel isolation deterioration
 - Stored charge with small number of electrons (a few dozens)
 - Increased cell to cell interference
- Performance
 - Longer programming times
 - Longer read times

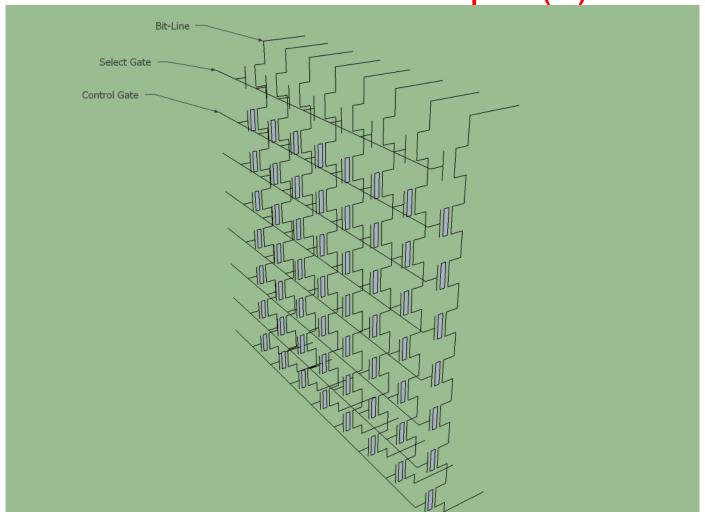

3D NAND:

- Solves many of the issues of 2D NAND
- Instead of scaling x-y dimensions, scale-up
- Scale back lithography:
 - Feature size > 3Xnm
 - No double / quad patterning
 - Improved reliability
- Higher performance (Samsung)
- Scaling:
 - Through additional number of layers

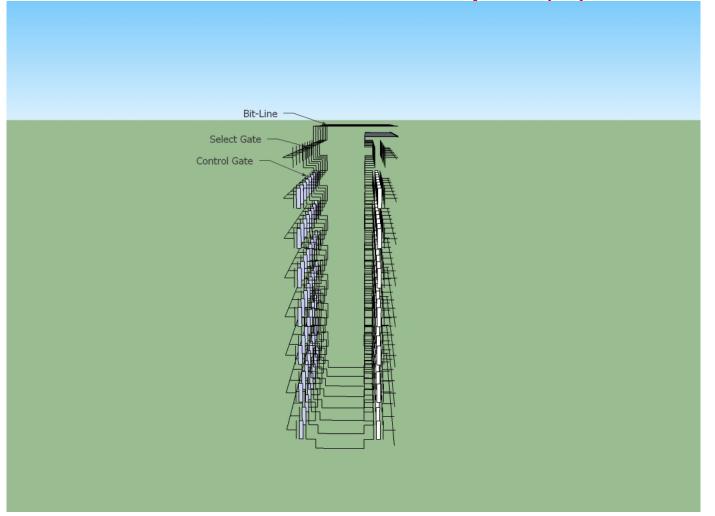
3D NAND – How Does It Work: P-BiCS Example (1)

Flash Memory Summit 2014 Santa Clara, CA

Flash Memory Work: P-BiCS Example (Work: P-BiCS Example (2)

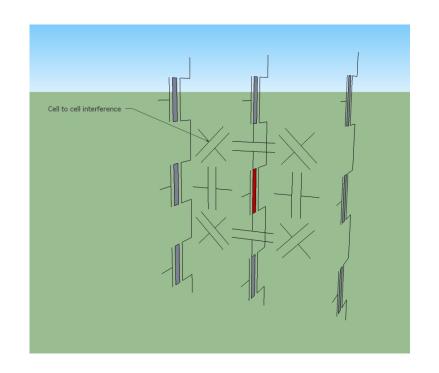


3D NAND – How Does It Work: P-BiCS Example (3)



3D NAND – How Does It Work: P-BiCS Example (4)

2-D / Planar NAND Interference:


• Row to Row: x2

• Bitline to Bitline: x2

Diagonal

(Bitline – Row): x4

• Total: x8

3-D NAND Interference:

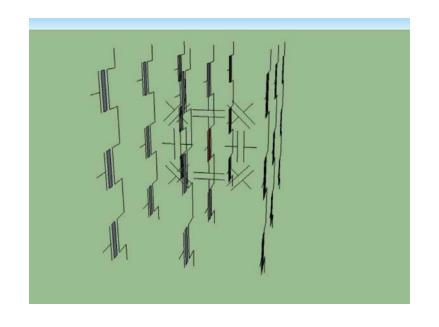
• Row to row: x2

• Bitline to bitline: x2

Diagonal

(Bitline – row): x4

Plane to plane: x2

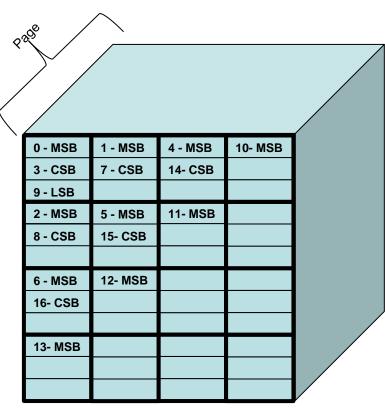

Plane to row: x4

Plane to bitline: x4

Diagonal:

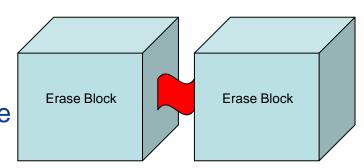
(Plane – bitline – row): x8

• Total: x26

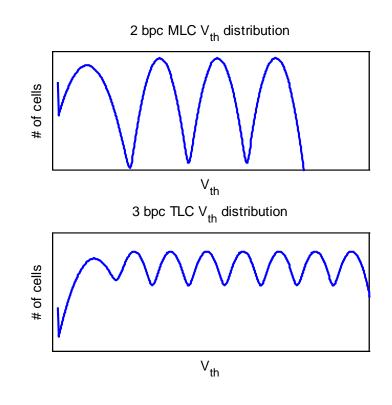


- Decoupling during read operation:
 - A Memory Modem[™] is used to improve read reliability and perform decoupling:
 - Divide interfering cells according to severity
 - Decode attempt with increased number of decoupling reads, according to severity

- Limiting interference through page program ordering:
 - A two dimensional programming order
 - More rows are not fully programmed (more pages at risk) at any one time
 - May be an issue during ungraceful power-down
 - A Memory Modem[™] is required to efficiently handle such cases with minimal impact on performance



TLC Program Ordering Example


- With scaling block to block may become an issue:
 - Current management algorithms assume independence, allowing erasing / programming blocks independently of others
 - Solution may include:
 - Management modifications
 - Stronger correction on edge plane
 - Special allocation on edge plane

- Scaling back lithography improves MLC reliability
- TLC deteriorates reliability and requires a Memory Modem[™]
- With Memory Modem[™] TLC performance may improve without impacting target reliability
- TLC is key for scaling in 3D (next slides)

- Scaling is required for reducing manufacturing costs
- Scaling can be performed in several ways:
 - Scaling through additional layers:
 - Samsung 1st gen 24, 2nd gen 32, ...
 - Limits:
 - Diminishing returns with number of layers
 - Tougher requirements from manufacturing tools
 - Lower reliability: read disturbs, programming disturbs

- Scaling through lithography:
 - Current 3D manufacturing is planned with no double patterning >38nm
- Scaling through more levels:
 - MLC -> TLC: cost effective
 - Requires Memory Modem[™] technology (ECC, DSP, low level memory management):
 - Increasing number of bits -> Impact on reliability ->
 Need state of art decoder and signal processing

ECC:

- Superior hard and soft decoding
- High throughput
- Low power / gate-count
- Highly configurable

DSP:

- Blind, No overheads
- Negligible impact on performance
- Low level memory management:
 - Configurable and optimal data allocation
 - Variable data allocation

- As scaling continues in 3D, reliability will be affected
- TLC is as cost effective in 3D as it is in 2D (probably even more)
- Memory Modem[™] technology is required for 3D NAND scaling