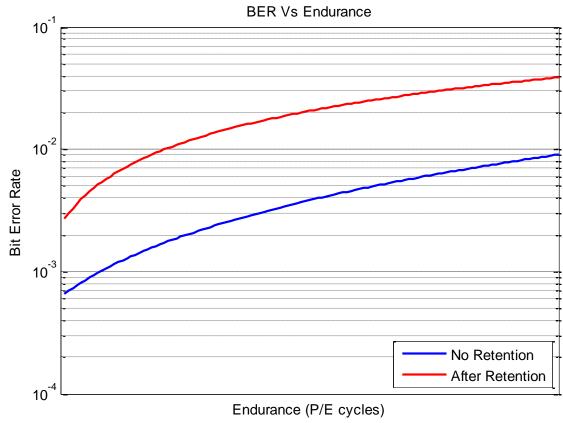


Memory Modem [™] FTL Architecture for 1Xnm / 2Xnm MLC and TLC Nand Flash

Hanan Weingarten, CTO, DensBits Technologies

Outline

- Requirements
- 1xnm/2xnm TLC NAND Flash Reliability Challenges
 - Reliability
 - BER Vs Endurance Vs Retention
 - Read / Program Disturbs
 - Integrity
 - "Ungraceful" power down
- DB3610 Memory Modem [™] FTL Layered approach:
 - Lower Layer Physical level reliability
 - Upper Layer Memory management

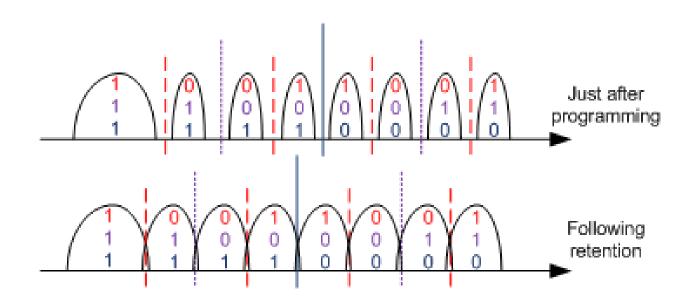

Requirements

- Data Integrity and Reliability
- High Performance
 - Throughput
 - IOPs
- Low Power
 - Mobile devices

1xnm/2xnm Reliability Challenges (1)

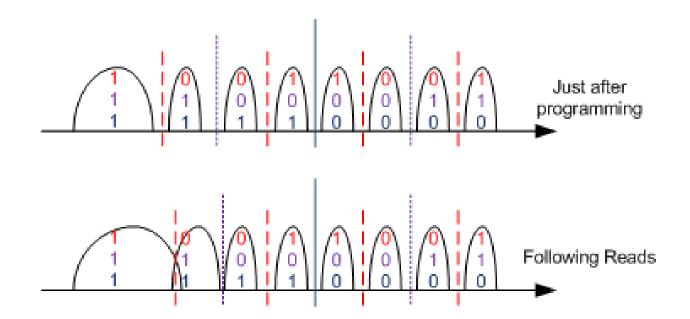
• Bit Error Rate (BER) Vs Endurance Vs Retention:

1xnm/2xnm Reliability Challenges (2)

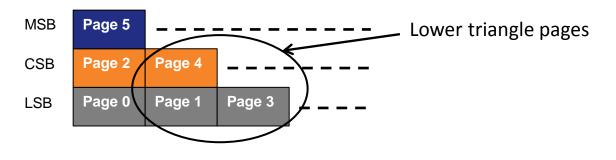

- BER Vs Endurance Vs Retention:
 - BER can go as high as 5e-2
 - Even without retention BER goes quickly up (1e-2)
 - 4x-5x factor in BERs due to retention

- ECC requirements
 - Near optimal reliability close to theoretical bounds
 - Perform both hard and soft decoding
 - Optimal and high performance hard decoding

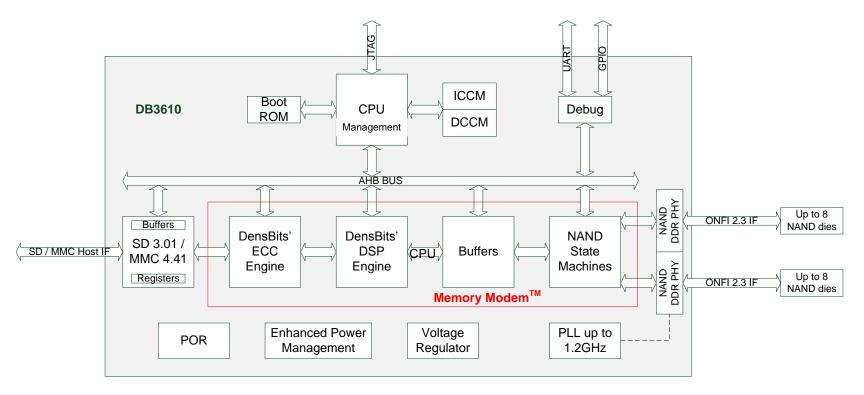
1xnm/2xnm Reliability Challenges (3)


- Retention effect:
 - Lobe widening
 - Lobe shift

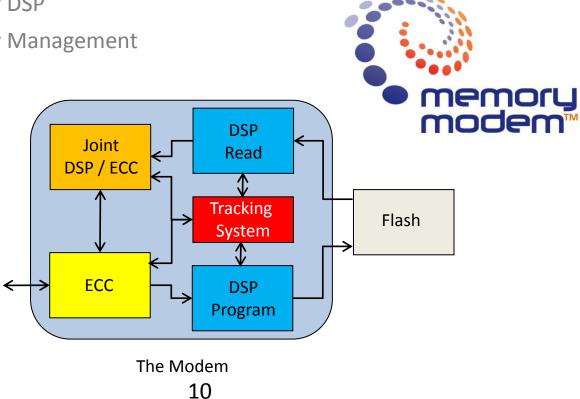
1xnm/2xnm Reliability Challenges (4)


• Read Disturbs

1xnm/2xnm Integrity Challenges


- Power down scenarios
 - Managed power off
 - Required data-bases are stored prior to power down
 - Sudden power off between transactions (graceful power off)
 - All written data are recoverable through meta-data
 - Sudden power off within a write transaction (ungraceful power loss)
 - All data except for last (interrupted) transaction must be recovered
 - Past data may be damaged due to interruption

DensBits Memory Modem [™] (1)


DB3610 eMMC/SD Controller Functional Diagram

DB3610 Memory Modem TM (2)

- Memory Modem[™] for Flash memories improving reliability, enabling smaller process nodes and more bits per cell
 - Proprietary ECC
 - Proprietary DSP
 - Proprietary Management

DB3610 Memory Modem [™] (3)^{*}

• FTL Layered approach

FTL
Higher Layer
WearDataBad BlockLevelingMappinghandling
Lower Layer Virtual NAND dies Virtual erase blocks Virtual program pages

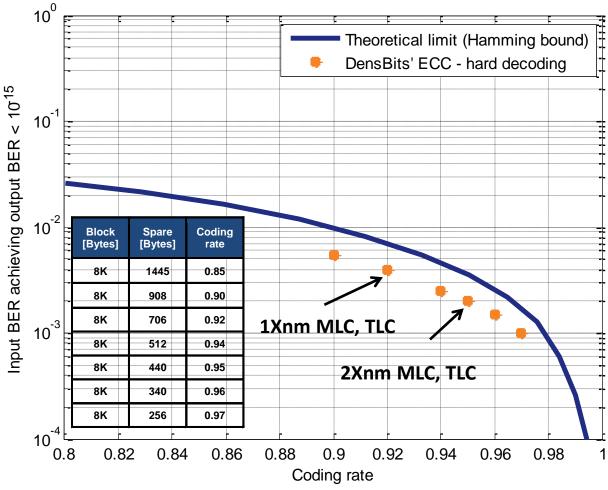
DB3610 Memory Modem [™] (4)

- FTL Layered approach
 - Lower layer
 - Handles the data
 - Responsible for presenting a reliable virtual FLASH to the upper layer
 - Includes main parts of memory Modem TM :
 - ECC flow
 - DSP software
 - Low-level memory management:
 - » Data allocation
 - » Damaged page recovery following "ungraceful" power-down

DB3610 Memory Modem [™] (5)

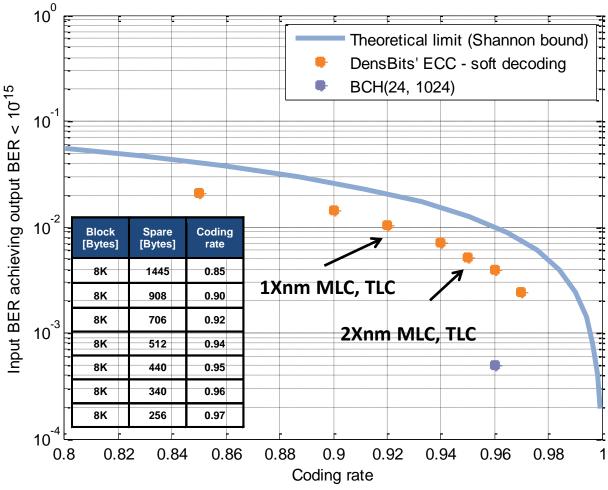
• FTL Layered approach

- Upper Layer
 - Handles control data
 - Data mapping
 - Wear leveling
 - Data integrity issues:
 - Bad blocks handling
 - Power-down recovery control data
 - Scrubbing
 - Metrics for lower layer to improve decisions
 - •

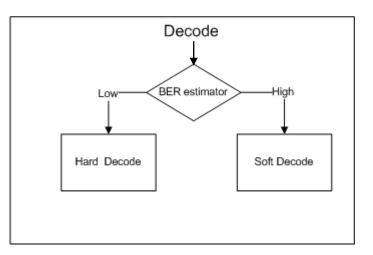

DB3610 Memory Modem [™] (6) - ECC

• Features

- **Configurable**, input parameters (set via software):
 - Block size: 0.5KB-8KB
 - Code rate: 0.5 0.99
- Slim design / low power
- Hard and Soft decoding
- Hard decoding as standard operation, soft decoding at extreme, guaranteeing reliability with low latency
- Per each block size and code rate, near-optimal error correction
 - Near Hamming bound (hard decoding theoretical limit)
 - Near Shannon bound (soft decoding theoretical limit)

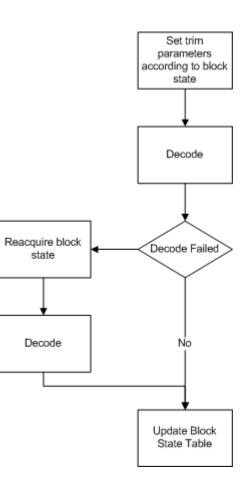


DensBits' ECC – Hard Decoding


DensBits' ECC – Soft Decoding

ECC FTL Flow

- Most common flow will perform hard decode
 - Enabled through hard decoding machinery
 - High performance
- Rare occasion, following retention, may require soft decoding
 - Performance price due to additional reads from flash memory


DB3610 Memory Modem [™] (7) - DSP

- Optimized read parameters
 - Optimization of read parameters **minimizing the input BER for the ECC**
 - "Blind" threshold acquisition
 - Optimization of performance through:
 - Block-state tracking
 - Continuous block state updates
- Optimization of program parameters, depending on block state, minimizing tPROG

DSP FTL Flow

• Read Flow:

DB3610 Memory Modem [™] (8) – Data Allocatio

- Different page types may have different reliability:
 - Even / Odd pages
 - MSB / CSB / LSB pages
- Data allocation can significantly improve data reliability :
 - Striping / Interleaving
 - Variable rate coding
 - BER equalization
 - X2 improvement in BER

DB3610 Memory Modem [™] (9)

- Upper Layer Data Mapping
 - Hybrid block/page level mapping
 - High IOPs
 - Low WA
 - Can be accommodated in an embedded system
- Wear leveling
- Other reliability considerations:
 - SLC block allocation

Summary

- 1xnm / 2xnm NAND Flash controllers require a Memory Modem [™] to obtain full reliability and performance
- A layered approach is a useful abstraction allowing handling various Failure mechanisms

The Future of NAND Flash Technology

Extreme Reliability, Unparalleled Performance

Thank You!

1 ,

1

1