Time-space Constrained Codes for Phase-change Memories
 4

Researcher: Minghai Qin, Graduate Student
 Collaborator: Eitan Yaakobi, Doctor
 Advisor: Paul H. Siegel, Professor

Center for Magnetic Recording Research, and Department of Electrical and Computer Engineering

Outline

1 Introduction to Phase-Change Memories

2 Problem Setup

3 Upper Bounds on Capacity

Lower Bounds on Capacity

Introduction to Phase-Change Memories

Introduction to Phase-Change Memories

- Why PCM could potentially replace flash?
- Like flash, decreasing cell level is done first by RESET and then SET.
- Different from flash, RESET can be performed to a single cell, instead of all block.
- Faster writing/reading speed.
- Degrade much more slowly. ($\sim 10^{8}$ vs. $\sim 10^{6}$ cycles)
- Less likely to "leak charges" than flash.
- Higher resistance to radiation.

Introduction to Phase-Change Memories

- Cell states
- Amorphous/RESET state (0) and Crystalline/SET state (1).
- Multiple levels: intermediate states.
- Cell programming (state-changing) is done by heating the cells.

Introduction to Phase-Change Memories

- Heat accumulation due to high temperatures
- Degrades performance of the cells.
- Affects adjacent cells by increasing their levels.
- Solution 1: Using Error Correction Codes (Flash)
- Solution 2: Using Modulation (Constrained) Codes (HDD)
- (d, k)-runlength-limited codes
- DC-free codes
- For PCM cells, we do not want too many cell-programmings
- within a certain number of writes
- among a span of consecutive cells.

Outline

1 Introduction to Phase-Change Memories

2 Problem Setup
3
Upper Bounds on Capacity

Lower Bounds on Capacity

Problem Setup

Definition[1]: Let (α, β, p) be positive integers. A code is (α, β, p) constrained if

- for any α consecutive writes, (time constraint)
- for any segment of β consecutive cells, (space constraint)
the total rewrite cost (the number of cell-programmings) of those cells over those rewrites is at most p.

Remark: Here the rewrite cost is defined as the Hamming distance between the current state and the next state.
[1] A. Jiang, J. Bruck, and H. Li, "Constrained codes for phase-change memories," Proc. IEEE Inform. Theory Workshop, Dublin, Ireland, August-September 2010.

Problem Setup

Example: Here is an ($\alpha=3, \beta=3, p=2$)-constrained code of length 9 in 4 writes.

Constrained code
$\left.\begin{array}{lllllllllll}\text { 0: } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text { 1: } & & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2 .

Problem Setup

Example: Here is an ($\alpha=3, \beta=3, p=2$)-constrained code of length 9 in 4 writes.

Constrained code

0:	0	0	0	0	0	0	0	0	0	
1:	1	0	0	0	1	1	0	0	0	1
2:	1	0	1	0	1	1	0	0	0	
3:	1	0	1	0	1	1	0	0	0	0
4:	1	1	1	0	0	1	0	1	0	

- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2 .

Problem Setup

Example: Here is an ($\alpha=3, \beta=3, p=2$)-constrained code of length 9 in 4 writes.

Constrained code

2:	0	0	0	0	0	0	0	0	0	
1:	1	0	0	0	1	0	0	0	0	1
2:	1	0	1	0	1	1	0	0	0	0
3:	1	0	1	0	1	1	1	0	0	0
4:	1	1	1	0	0	1	0	1	0	

- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2 .

Problem Setup

Example: Here is an ($\alpha=3, \beta=3, p=2$)-constrained code of length 9 in 4 writes.

Constrained code

0:	0	0	0	0	0	0	0	0	0		
1:	1	0	0	0	0	1	1	0	0	0	1
2:	1	0	1	0	1	1	1	0	0	0	
3:	1	0	1	0	1	1	1	0	0	0	
4:	1	1	1	0	0	1	0	1	0		

- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2 .

Problem Setup

Example: Here is an ($\alpha=3, \beta=3, p=2$)-constrained code of length 9 in 4 writes.

Constrained code

| 2: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1: | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
| 2: | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 3: | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 4: | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | |

- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2 .

Problem Setup

Example: Here is an ($\alpha=3, \beta=3, p=2$)-constrained code of length 9 in 4 writes.

Constrained code

| 2: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1: | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 2: | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 3: | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 4: | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |

- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2 .

Problem Setup

Example: Here is an ($\alpha=3, \beta=3, p=2$)-constrained code of length 9 in 4 writes.

Constrained code

0:	0	0	0	0	0	0	0	0	0	
1:	1	0	0	0	1	0	0	0	0	1
2:	1	0	1	0	1	1	0	0	0	0
3:	1	0	1	0	1	1	0	0	0	0
4:	1	1	1	0	0	1	0	1	0	

- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2 .

Problem Setup

Example: Here is an ($\alpha=3, \beta=3, p=2$)-constrained code of length 9 in 4 writes.

Constrained code

0:	0	0	0	0	0	0	0	0	0
1:	1	0	0	0	1	0	0	0	1
2:	1	0	1	0	1	1	0	0	0
3:									
4:	1	0	1	0	1	1	0	0	0
4	1	1	1	0	0	1	0	1	0

- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2 .

Problem Setup

Problem Setup

Definition: Suppose the number of bits on each write is M, the rate of the constrained code is $R=M / n$.

The Shannon capacity of the constraint is
$C(\alpha, \beta, p)=\lim _{n \rightarrow \infty} \sup \{R: R$ is a rate of an (α, β, p)-constrained code of length $n\}$

Question: Given (α, β, p), what is $C(\alpha, \beta, p)$?

Outline

1 Introduction to Phase-Change Memories

2 Problem Setup

3 Upper Bounds on Capacity

4 Lower Bounds on Capacity

Upper Bound on $\mathbf{C}(\alpha, \beta, p)$

General statement of $C(\alpha, \beta, p)$

Upper Bound on $\mathbf{C}(\alpha, \beta, p)$

Upper Bounds on the capacity of $(1, \beta, p)$ or $(\alpha, 1, p)$-constraint.

[1]. M. Qin, E. Yaakobi, and P. H. Siegel, "Time-space constrained codes for phase-change memories," Globecom, 2011

Outline

1 Introduction to Phase-Change Memories

2 Problem Setup
3
Upper Bounds on Capacity

Lower Bounds on Capacity

Lower Bounds on $C(\alpha, \beta, p)$

Special Cases

$$
(\alpha=1, \beta, p) \text {-code }
$$

$$
(\alpha, \beta=1, p) \text {-code }
$$

Space Constraint Construction: $\mathbf{C}(\alpha=1, \beta, p)$

Theorem: The upper bounds of $C(1, \beta, p)$ in the previous section are tight.

- Property of group codes.
- Exponential complexity in encoding.

Time Constraint Construction: $C(\alpha, \beta=1, p)$

- Constructions based on Write-once memories (WOM) codes[1].
[1]. R.L.Rivest and A. Shamir, "How to reuse a write-once memory," Inform. and Contr., vol. 55, no. 1-
3, pp. 1-19, December 1982.

Summary

- Motivation
- Cell programming (State changes) \rightarrow Heat accumulation \rightarrow Errors in read/write
- Modulation (Constrained) codes
- Time-constraint
- Space-constraint
- Upper bounds
- Lower bounds

Thank You !

