Time-space Constrained Codes for Phase-change Memories

Researcher:Minghai Qin, Graduate StudentCollaborator:Eitan Yaakobi, DoctorAdvisor:Paul H. Siegel, Professor

Center for Magnetic Recording Research, and Department of Electrical and Computer Engineering

University of California, San Diego

4 Lower Bounds on Capacity

3

Flash Memory Summit - August 2011

8/18/2011 12:05 PM

- Why PCM could potentially replace flash?
 - Like flash, decreasing cell level is done first by **RESET** and then **SET**.
 - Different from flash, RESET can be performed to a single cell, instead of all block.
 - Faster writing/reading speed.
 - Degrade much more slowly. ($\sim 10^8$ vs. $\sim 10^6$ cycles)
 - Less likely to "leak charges" than flash.
 - Higher resistance to radiation.

- Cell states
 - Amorphous/RESET state (0) and Crystalline/SET state (1).
 - Multiple levels: intermediate states.
 - Cell programming (state-changing) is done by heating the cells.

- Heat accumulation due to high temperatures
 - Degrades performance of the cells.
 - Affects adjacent cells by increasing their levels.
- Solution 1: Using Error Correction Codes (Flash)
- Solution 2: Using Modulation (Constrained) Codes (HDD)
 - (*d*,*k*)-runlength-limited codes
 - DC-free codes
- For PCM cells, we do not want too many cell-programmings
 - within a certain number of writes
 - among a span of consecutive cells.

Outline

4 Lower Bounds on Capacity

3

Flash Memory Summit - August 2011

Definition[1]: Let (α, β, p) be positive integers. A code is (α, β, p) constrained if

- for any α consecutive writes, (time constraint)
- for any segment of β consecutive cells, (space constraint)

the total rewrite cost (the number of cell-programmings) of those cells over those rewrites is at most *p*.

Remark: Here the rewrite cost is defined as the Hamming distance between the current state and the next state.

[1] A. Jiang, J. Bruck, and H. Li, "Constrained codes for phase-change memories," *Proc. IEEE Inform. Theory Workshop, Dublin, Ireland, August-September 2010.*

Example: Here is an (α =3, β =3,p=2)-constrained code of length 9 in 4 writes.

- 0: 000000000
- 1: 10001001
- 2: 1 0 1 0 1 1 0 0 0
- 3: 101011000
- 4: 111001010
- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2.

Example: Here is an (α =3, β =3,p=2)-constrained code of length 9 in 4 writes.

- 0: 000000000
- 1: 100010001
- 2: 1 0 1 0 1 1 0 0 0
- 3: 101011000
- $4: \quad 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$
- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2.

Example: Here is an (α =3, β =3,p=2)-constrained code of length 9 in 4 writes.

- 0: 000000000
- 1: 100010001
- 2: 1010100
- 3: 101011000
- 4: 1 1 1 0 0 1 0 1 0
- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2.

Example: Here is an (α =3, β =3,p=2)-constrained code of length 9 in 4 writes.

- 0: 000000000
- 1: 100010001
- 2: 101011000
- 3: 101011000
- 4: 111001010
- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2.

Example: Here is an (α =3, β =3,p=2)-constrained code of length 9 in 4 writes.

- 0: 00000000
- 1: 10001001
- 2: 101011000
- 3: 101011000
- 4: 1 1 1 0 0 1 0 1 0
- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2.

Example: Here is an (α =3, β =3,p=2)-constrained code of length 9 in 4 writes.

- 0: 000000000
- 1: 100010001
- 2: 101011000
- 3: 101011000
- 4: 111001010
- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2.

Example: Here is an (α =3, β =3,p=2)-constrained code of length 9 in 4 writes.

- 0: 0000000000
- 1: 100010001
- 2: 101011000
- 3: 101011000
- 4: 1 1 1 0 0 1 0 1 0
- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2.

Example: Here is an (α =3, β =3,p=2)-constrained code of length 9 in 4 writes.

- 0: 0000000000
- $1: \quad 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1$
- 2: 101011000
- 3: 101011000
- 4: 111001010
- The number of cells programmed (red digits) in the rectangle of 3 by 3 is at most 2.

Definition: Suppose the number of bits on each write is M, the rate of the constrained code is R = M / n.

The Shannon capacity of the constraint is

 $C(\alpha, \beta, p) = \lim_{n \to \infty} \sup \{ R : R \text{ is a rate of an } (\alpha, \beta, p) \text{-constrained code of length } n \}$

Question: Given (α, β, p) , what is $C(\alpha, \beta, p)$?

Outline

4 Lower Bounds on Capacity

Flash Memory Summit - August 2011

Upper Bound on $C(\alpha, \beta, p)$

General statement of $C(\alpha, \beta, p)$

8/18/2011 12:05 PM

Upper Bound on $C(\alpha, \beta, p)$

Upper Bounds on the capacity of $(1, \beta, p)$ or $(\alpha, 1, p)$ -constraint.

[1]. M. Qin, E. Yaakobi, and P. H. Siegel, "Time-space constrained codes for phase-change memories," *Globecom*, 2011

Outline

4 Lower Bounds on Capacity

3

Lower Bounds on $C(\alpha, \beta, p)$

Special Cases

 $(\alpha = 1, \beta, p)$ -code

$$(\alpha, \beta = 1, p)$$
-code

General (α, β, p) -code

8/18/2011 12:05 PM

Space Constraint Construction: $C(\alpha = 1, \beta, p)$

Theorem: The upper bounds of $C(1, \beta, p)$ in the previous section are tight. $C(1, \beta, p)$

Key points:

- Probabilistic approach.
- Property of group codes.
- Exponential complexity in encoding.

Time Constraint Construction: $C(\alpha, \beta = 1, p)$

• Constructions based on Write-once memories (WOM) codes[1].

^{[1].} R.L.Rivest and A. Shamir, "How to reuse a write-once memory," *Inform. and Contr., vol. 55, no. 1–3, pp. 1–19, December 1982.*

Summary

- Motivation
 - Cell programming (State changes) → Heat accumulation
 → Errors in read/write
 - Modulation (Constrained) codes
 - Time-constraint
 - Space-constraint
- Upper bounds
- Lower bounds

