

Flash Memory Arrays in Enterprise Applications

Ken Ow-Wing, Senior Product Line Manager Violin Memory, Inc.
685 Clyde Ave, Mountain View, CA 94043
Office: 650-396-1603 Mobile: 415-608-7773

Enterprise Customer Requirements New Product Category Enterprise Use Cases Business Benefits

Appendix
 Economics
 Array Characteristics

Enterprise Environments: Requirements

- Flash Performance
- Consistent Low Response Time
- Reliability
- Availability
- Serviceability
- Scalability
- Manageability
- Resource Utilization

Evolution of Use of Flash

Flash Memory Storage – 2PB

Silicon Virtualized Data Center

Flash Memory Arrays

Available by the rack

Available as shelves

Flash Memory Summit, August 2011 Santa Clara, CA

8/4/2011

Database Appliance – 20,000 users

High Performance Database Solution for OLTP

Difference	Benefit	
* No support for rotating media	Optimum performance with flash	
* Distributed Garbage Collection	Sustained Writes, no "Write Cliff"	
* Purpose Built "vRAID" for Flash	Sustained Writes, no "R/M/W"	
* vRAID not blocked by erasures	Significant Latency reduction	
* vRAID protects flash devices	No replacement on flash failure	
* Flash Packaging	Density > 10TB per RU	

* Flash Memory Arrays are different from SSD and/or flash cards

8/4/2011

Flash Memory Summit, August 2011 Santa Clara, CA

Hardware Flash RAID

1st Purpose Built RAID for Flash Memory Arrays

Failure Handling Result:

- Data rebuilt on same VIMM
- VIMM stays in service
- No data loss
- Increases MTBF 4X

Details – Example

- Flash chip fails (Red)
- vRAID rebuilds data on same VIMM (Blue)
- Garbage collection avoided, performance maintained
- Rebuilt data on extra NAND
- HW RAID in Controller

8/4/2011

Violin Memory, Inc. Proprietary

Difference	Benefit
* No support for rotating media	Optimum performance with flash
* Distributed Garbage Collection	Sustained Writes, no "Write Cliff"
* Purpose Built "vRAID" for Flash	Sustained Writes, no "R/M/W"
* vRAID not blocked by erasures	Significant Latency reduction
* vRAID protects flash devices	No replacement on flash failure
* Hot swappable components	No outage or data loss
* Shareability	Max utilization by many servers
* Scalability	Lg. dataset w/simplicity
* Flash Packaging	Density > 10TB per RU

* Flash Memory Arrays are different from SSD and/or flash cards

Flash Memory Summit, August 2011 Santa Clara, CA

Violin – Sustained performance

Enterprise Use Cases

Tiered Storage 2.0

Violin Memory Inc. Proprietary

SQL Server 2008

TRM.

MySQ

DB2。

Transaction Processing

Co-exist with Legacy HDD Systems

Co-exist with Legacy HDD Systems

Flash Memory Summit, August 2011 Santa Clara, CA

8/4/2011

Transaction Processing

Flash Memory Arrays

Arrays

Short-Stroked 146-600GB 15K FC disk FC

_K 400-600 GB FC disk

400 to 600 GB FC disk

DW/ODS

2-4 TB SATA/ SAS disk 60 GB tape

Archive

Move high
performance
transactions
to FlashHigh IOPs
Low Latency
>Server Utilization
> IOPs/sq. foot

on Fully Utilize Disk Capacity

OLTP

Flash Memory Summit, August 2011 Santa Clara, CA

8/4/2011

Nearline

Multi-Tenancy

Max Availability, Isolation, Utilization

Flash Memory Summit, August 2011 Santa Clara, CA

OLTP, DW, ODS Net Benefit: Analytics For Big Data

Flash Memory Summit, August 2011 Santa Clara, CA

Extending the Use of Flash.....

Facilitates:

Movement to High
 End Commercial
 Data Center usage

Next evolutionary step
 beyond capabilities of
 SSD and Flash PCIe boards

 Extend Benefits of Flash beyond current performance and latency benefits Enablers:
Scalability
Share-ability
Manageability
I/O

Sustained Writes
Hot Swap
HA
RAID
Fail-in-place
Remote mgmt.
Partitions

8/4/2011

Manageability

SNMP

Interface - System
and network mgmt
Ex: HP NNM and IBM
Tivoli tools

Array mgmt

- Wear mgmt
- 5 Year MLC lifetime under std maintenance agreement

REST API Interface to proprietary provisioning systems -XLM interface to management systems Remote Admin
Single Web GUI &
CLI
XML API & SNMP
Email alerts
Single multi-PB
image

Business Benefits

ashmemory Application Acceleration w/HP

invent	OLTP Results November, 2010				
Total System Cost:	Transactions/Min	Price/Performance			
\$2,126,304 (\$900,000 = Oracle SW)	3,388,535	\$0.63 (per transaction per minute)			
Processors/Cores	Database Manager	Operating System			
8/64	Oracle Database	Oracle Linux Basic			
Intel Xeon 2.26 GHz	11g Rel 2 Enterprise	TUXEDO 11gR1			

70% Reductions

✓ Cost
 ✓ Rack space
 ✓ Power
 ✓ Response time

HP ProLiant DL980 G7

Database Options: •Oracle 8/9/10/11/RAC •MS SQL Server •Sybase + Others

Flash Memory Array

Open Architecture

Scales Linearly

\$0.63 with Flash RAID

vs. \$2.40 (Oracle Exadata 2)

or \$1.01 without RAID

(Oracle SuperCluster 2011)

Key Business Benefits

Application Acceleration

- Meet & Exceed SLAs
- Simpler System Architectures
- Deploy new apps faster
- Reduce tuning costs

Infrastructure Consolidation

- Reduce CapEx and OpEX
- Fewer Spindles, licenses, servers
- Less Power, space, service
- Leverage existing infrastructure
- Enable Virtualization

Lower \$ per Application

Data Center Transformation

The transition from spinning to solid-state storage is already underway."

Steve O'Donnell, ESG

Flash Memory Summit, August 2011 Santa Clara, CA

Key Take Always

Flash Memory Arrays:

- Suitable for High End Enterprise Applications
- Meet Enterprise Application requirements**

**Summary of requirements:

Flash Performance Reliability, Serviceability Manageability Consistent low response time Availability, Scalability Resource Utilization

Appendix

Flash Memory Array Characteristics

Category	Characteristic (8 racks)	Uses		
Scalability*	2 + PB	Large Active Data Sets		
IOPS**	64,000,000	Migrate from short-stroked 15K FC HDD		
Bandwidth**	400 GB/sec read 256 GB/sec write	Excellent ingest and data distribution		
Latency	25 μs write 75 μs read	Max server utilization		
Availability	HA and RAID	High end applications		
Manageability	XLM/SNMP interfaces	High end applications		
Protocols	FC, iSCSI, IB (Q3), NFS	Multiple environments		
I/O	(512) 8 Gbit FC ports or (512) 10 GbE ports (64) 40 GB/sec IB ports (Q3)	Max resource utilization		

* Raw ** Theoretical

Compelling Economics

Performance Per Rack	Flash Memory Arrays		Conventional HDD Arrays		HDD/SDD Combination	
IOPS	2,000,000*		24,000		40,000	
Latency	200 µsec		5000 µsec		2000 µsec	
Cost per Application	Flash Memory Arrays		SATA/SAS		FC	
\$/IOPS (4K)	\$1.00		\$17.00		\$20.00	
Cost per GB Flash	Flash Memory Arrays	R/ Ar	AID-1 SSDs in rray	PC Mi	le Flash in rrored Systems	
\$/GB with RAID	\$22.00	\$1	00 - \$200	\$6	0.00	

* Based on one rack with 8 memory arrays

Flagship Customer

600+ Terabytes and counting

 Problem: ORACLE <u>Ad Server Reporting</u> only met 8 hour SLA twice in 6 months
 Goal: consistent sustainable IO performance to meet SLA under EMC's Enterprise Storage management tools

Result: On Violin Arrays without any tuning, haven't missed SLAs

AOL is now able to further enhance their Ad Campaign Reporting

- Reinforcing what works, pruning what doesn't
- Potential for positive revenue impact going forward

AOL was one of EMC's VPLEX key launch customers

- Global production prior to official launch by EMC
- Significant amount of VPLEX support matrix was validated @ AOL
- Violin 3200 Memory Array certified under EMC VPLEX
 - Winning combination of consistent sustainable performance under world-class enterprise management system
- VPLEX certification enables Violin's products to be seamlessly used in EMC environments

TPC-E Blade server world Record – June 2010

- This is the first use of non-HP storage in an HP TPC benchmark
- Flash Memory Arrays only operating at 35% utilization
- Other HP benchmarks due shortly
- The TPC-E benchmark simulates the OLTP workload of a brokerage firm. The focus of the benchmark is the central database that executes transactions related to the firm's customer accounts. Although the underlying business model of TPC-E is a brokerage firm, the database schema, data population, transactions, and implementation rules have been designed to be broadly representative of modern OLTP systems.

Thank You