Error-Correcting Codes for TLC Flash

Eitan Yaakobi, Laura Grupp Steven Swanson, Paul H. Siegel, and Jack K. Wolf

University of California San Diego

Flash Memory Summit, August 2011

Outline

- Flash Memory Structure
- Partial Cell Usage in TLC Flash
- ECC Comparison for TLC Flash
- New ECC Scheme for TLC Flash

SLC, MLC and TLC Flash

Flash Memory Structure

- A group of cells constitute a page
- A group of pages constitute a block
 - In SLC flash, a typical block layout is as follows

page 0	page 1		
page 2	page 3		
page 4	page 5		
•			
•			
•	•		
page 62	page 63		

Flash Memory Structure

MSB/LSB

01

00

10

11

- In MLC flash the two bits within a cell DO NOT belong to the same page – MSB page and LSB page
- Given a group of cells, all the MSB's constitute one page and all the LSB's constitute another page

Row	MSB of first	LSB of first	MSB of last	LSB of last	
index	2^{14} cells	2^{14} cells	2^{14} cells	2^{14} cells	
0	page 0	page 4	page 1	page 5	
1	page 2	page 8	page 3	page 9	
2	page 6	page 12	page 7	page 13	
3	page 10	page 16	page 11	page 17	
:	•	• • •	•	:	
30	page 118	page 124	page 119	page 125	
31	page 122	page 126	page 123	page 127	

Flash Memory Structure - TLC

	MSB Page	CSB Page	LSB Page	MSB Page	CSB Page	LSB Page
Row	MSB of	CSB of	LSB of	MSB of	CSB of	LSB of
index	first 2 ¹⁶	first 2 ¹⁶	first 2 ¹⁶	last 2 ¹⁶	last 2 ¹⁶	last 2 ¹⁶
	cells	cells	cells	cells	cells	cells
0	page 0			page 1		
1	page 2	page 6	page 12	page 3	page 7	page 13
2	page 4	page 10	page 18	page 5	page 11	page 19
3	page 8	page 16	page 24	page 9	page 17	page 25
4	page 14	page 22	page 30	page 15	page 23	page 31
•	• •		•	÷		:
62	page 362	page 370	page 378	page 363	page 371	page 379
63	page 368	page 376		page 369	page 377	
64	page 374	page 382		page 375	page 383	
65	page 380			page 381		

6

Experiment Description

- We checked several flash memory TLC blocks
- For each block the following steps are repeated
 - The block is erased
 - A pseudo-random data is written to the block
 - The data is read and compared to find errors

Remarks:

- We measured many more iterations than the manufacturer's guaranteed number of erasures
- The experiment was done in laboratory conditions and related factors such as temperature change, intervals between erasures, or multiple readings before erasures were not considered

Raw BER Results

Raw BER Results

Center for Magnetic Recording Research

Partial Cell State Usage

- Store either one or two bits in every cell
 - For one bit, only the MSB pages
 - For two bits, only the MSB and CSB pages
- Two cases:
 - The partial storage is introduced at the beginning
 - The partial storage is introduced after 2000 normal program/erase cycles

Low Voltage

Partial Cell State Usage - BER

ECC Comparison

- We evaluated different ECC schemes
- BCH Codes
- LDPC Codes
 - Gallager Codes
 - Protograph-based low-density convolutional codes
 - AR4JA protograph-based LDPC codes
 - LDPC codes taken from MacKay's database of sparse graph codes

ECC Comparison $R \approx 0.8$

ECC Comparison $R \approx 0.9$

ECC Comparison $R \approx 0.925$

New ECC Scheme for TLC Flash

- Errors are corrected in each page independently
- In particular, in a group of MSB, CSB, and LSB pages sharing the same group of cells, errors are still corrected independently
- Goal: to correct errors in a group of pages together
- If a cell is in error, then with high probability one of the bits in the cell is in error

011

010

000

001

101

100

110

111

New ECC – Encoder

- From every group of three pages we generate one page over *GF*(4)
- Use two codes
 - A code over GF(4) encodes the new page over GF(4)
 - A binary code encodes the MSB pages

New ECC – Encoder

- From every group of three pages we generate one page over *GF*(4)
- Use two codes
 - A code over GF(4) encodes the new page over GF(4)
 - A binary code encodes the MSB pages

New ECC - Insights

- If there is a cell error, then with high probability at most one of the bits in the cell is in error
- The code over *GF*(4) find these one-bit cell-errors
- However, it is still possible to see 2-bit and 3-bit cell errors
- After the first stage, if a cell has 2- or 3-bit cel-errors, then all the bits are in error
- The second code, working on the MSB bits, finds these errors

New ECC – Decoder

Summary

- Partial Cell Usage in TLC Flash
- ECC Comparison for TLC Flash
- New ECC Scheme for TLC Flash
- More analysis of codes and error behavior -COME TO BOOTH #115!

Acknowledgements

- Aman Bhatia, Brian K. Butler, Aravind Iyengar, and Minghai Qin for their help in processing the error measurement results and, in particular, for the LDPC code performance simulations
- Jeff Ohshima and Hironori Uchikawa for their collaboration and support from Toshiba

