

Memory Applications with Xilinx FPGAs

Jameel Hussein Xilinx Technical Marketing Manager

August 2011

Santa Clara, CA August 2011

What happens to the FPGA after power up?

- FPGAs are volatile by design
- FPGAs needs to receive "configuration data" that defines the specific resources and interconnect used for a design
 - The FPGA can actively obtain its data from a memory device or
 - The FPGA can be sent data from a microprocessor or similar source
- FPGA configuration data is often stored in flash memory
- Once all configuration data is received, a short startup sequence in the FPGA makes the device operational

What is memory used for after configuration?

Multiple uses for flash even after initial configuration

Fast Configuration and Instant-ON Applications

- PCIe applications require FPGA to load in <100ms</p>
- CAN Network application require FPGA to load in <100ms
- Handheld and consumer applications require fast start-up
- High speed flash, QSPI and burst Parallel NOR help FPGAs meet fast start up requirements

High speed flash: QSPI and burst Parallel NOR help FPGAs meet fast start up requirements

Partial Reconfiguration

- Partial Reconfiguration dynamically modifies logic blocks while the remaining logic operates without interruption
- Store partial bit files in flash memory
- SWAP (<u>Size</u>, <u>W</u>eight, <u>and</u>, <u>P</u>ower)
- Perform multiple tasks on fewer or smaller FPGAs
- Power Reduction
 - Via smaller or/and fewer devices
 - Swap out power-hungry tasks

Unique Xilinx FPGA feature brings flexibility, cost, and power reduction

Complete ARM[®]-based Processing System

- Dual ARM Cortex[™]-A9 MPCore[™], processor centric
- Integrated memory controllers & peripherals
- Fully autonomous to the Programmable Logic

Tightly Integrated Programmable Logic

- Used to extend Processing System
- Scalable density and performance
- Over 3000 internal interconnects

Flexible Array of I/O

- Wide range of external multi-standard I/O
- High performance integrated serial transceivers
- Analog-to-Digital Converter inputs

Flash memory utilized for XIP with embedded processors in the FPGA

7 Series FPGA Family Highlights

High Performance

ARTIX.7

Lowest Power

and Cost

Computing

Next Gen Wired Communications Next Gen Wireless Communications

Consumer

Audio Video

Broadcast

VIRTEX.

Industry's Highest System Performance and Capacity

- · Portable/handheld ultrasound
- 3D cameras & camcorders
- D-SLR still cameras
- Software defined radio
- 3DTV
- Portable eReaders
- Automotive Infotainment
- Multifunction printers

Wireless LTE infrastructure

KINTEX."

Industry's Best

Price-Performance

- 10G PON OLT line card
- LED backlit & 3D video displays
- Video-over-IP bridge
- Cellular radio
- Medical & Avionics imaging
- Set top boxes
- Motor control

- 400G & 100G line cards
- 300G Interlaken bridge
- Terabit switch fabric
- 100G OTN
- MUXPONDER
- RADAR
- ASIC emulation
- Test & Measurement

Test & Measurement

Medical Imaging

7 Series FPGAs and Zynq-7000 **Family Configuration Solution**

- SPI x1, x2, and x4 interfaces
- Parallel NOR interface with burst modes
- NAND Interface
- Configuration via PCIe
 - Host reads flash and sends to FPGA
- Configuration via Ethernet
 - Host reads flash and sends to FPGA
- Supports configuration from processor
 - Processor reads from flash and sends to FPGA
- AES-256 bit Encryption
- Partial Reconfiguration

Xilinx gives you more flexibility with configuration solutions for all applications

Thank You

Santa Clara, CA August 2011