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Flash Memory 

 Used for more than a decade in consumer device storage 

applications 

 Very recent use in desktops and servers 

 New access patterns (e.g., random writes) pose new challenges for 

delivering sustained high throughput and low latency 

 Higher requirements in reliability, performance, data life 

 Challenges being addressed at different layers of storage 

stack 

 Flash device vendors: device driver/ inside device 

 System builders: OS and application layers, e.g., Focus of this talk 
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Flash Aware Applications  

 System builders: Don’t just treat flash as disk replacement 

 Make the OS/application layer aware of flash 

 Exploit its benefits  

 Embrace its peculiarities and design around them 

 Identify applications that can exploit sweet spot between cost and 

performance 

 Device vendors: You can help by exposing more APIs to 

the software layer for managing storage on flash 

 Can help to squeeze better performance out of flash with 

application knowledge   
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Flash for Speeding Up Cloud/Server 

Applications  

 FlashStore [VLDB 2010] 

 High throughput, low latency persistent key-value store using flash as 

cache above HDD 

 ChunkStash [USENIX ATC 2010] 

 Efficient index design on flash for high throughput data deduplication 

 BloomFlash [ICDCS 2011] 

 Bloom filter design for flash 

 SkimpyStash [ACM SIGMOD 2011] 

 Key-value store with ultra-low RAM footprint at about 1-byte per k-v pair 

 Flash as block level cache above HDD 

 Either application managed or OS managed 

 SSD buffer pool extension in database server 

 SSD caching tier in cloud storage 

Slide 7  



Flash Memory: Random Writes 

 Need to optimize the storage stack for making best use of 

flash 

 Random writes not efficient on flash media 

 Flash Translation Layer (FTL) cannot hide or abstract away device 

constraints 
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FlashStore: High Throughput 

Persistent Key-Value Store 



Design Goals and Guidelines 

 Support low latency, high throughput operations as a key-

value store 

 Exploit flash memory properties and work around its 

constraints 

 Fast random (and sequential) reads 

 Reduce random writes 

 Non-volatile property 

 Low RAM footprint per key independent of key-value pair 

size 
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FlashStore Design: Flash as Cache 

 Low-latency, high throughput operations 

 Use flash memory as cache between RAM and hard disk 

 
RAM 

. . . 

RAM 

Disk . . . 

Flash Memory 

Current FlashStore 

Disk 

(bottlenecked by hard disk 

seek times ~ 10msec) 
(flash access times are of the 

order of 10 -100 µsec) 



FlashStore Design: Flash Awareness 

 Flash aware data structures and algorithms 

 Random writes, in-place updates are expensive on flash memory 

 Flash Translation Layer (FTL) cannot hide or abstract away device constraints 

 Sequential writes, Random/Sequential reads great! 

 Use flash in a log-structured manner 
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FlashStore Architecture 

RAM write buffer for 

aggregating writes into flash 

RAM read cache for recently 

accessed key-value pairs 

Key-value pairs on flash indexed in RAM 

using a specialized space efficient hash table 

Key-value pairs organized on 

flash in log-structured manner 

Recently unused 

key-value pairs 

destaged to HDD  



FlashStore Design: Low RAM Usage 

 High hash table load factors while keeping 

lookup times fast 

 Collisions resolved using cuckoo hashing 

 Key can be in one of K candidate positions 

 Later inserted keys can relocate earlier keys to 

their other candidate positions 

 K candidate positions for key x obtained using  

K hash functions h1(x), …, hK(x) 

 In practice, two hash functions can simulate K 

hash functions using hi(x) = g1(x) + i*g2(x) 

 System uses value of K=16 and targets 

90% hash table load factor  

Insert X 



Low RAM Usage: Compact Key 

Signatures 

 Compact key signatures stored in hash table 

 2-byte key signature (vs. key length size bytes) 

 Key x stored at its candidate position i derives its signature from    

hi(x) 

 False flash read probability < 0.01% 

 Total 6-10 bytes per entry (4-8 byte flash pointer) 

 

 

 

 Related work on key-value stores on flash media 

 MicroHash, FlashDB, FAWN, BufferHash  
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FlashStore Performance Evaluation 

 Hardware Platform 

 Intel Processor, 4GB RAM, 7200 RPM Disk, fusionIO SSD 

 Cost without flash = $1200 

 Cost of fusionIO 80GB SLC SSD = $2200 (circa 2009) 

 

 

 

 Trace 

 Xbox LIVE Primetime 

 Storage Deduplication 



FlashStore Performance Evaluation 

 How much better than simple hard disk replacement with 

flash? 

 Impact of flash aware data structures and algorithms in FlashStore 

 Comparison with flash unaware key-value store 

 FlashStore-SSD 

 BerkeleyDB-HDD 

 BerkeleyDB-SSD 

 FlashStore-SSD-HDD (evaluate impact of flash recycling activity) 
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BerkeleyDB used as the flash 

unaware  index on HDD/SSD 



Throughput (get-set ops/sec) 
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Performance per Dollar 

 From BerkeleyDB-HDD to FlashStore-SSD 

 Throughput improvement of  ~ 40x 

 Flash investment = 50% of HDD capacity (example) 

     = 5x of HDD cost (assuming flash costs 10x per GB) 

 Throughput/dollar improvement of about 40/6 ~ 7x 
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SkimpyStash: Ultra-Low RAM 

Footprint Key-Value Store on Flash 



Aggressive Design Goal for RAM Usage 

 Target ~1 byte of RAM usage per key-value pair on flash 

 Tradeoff with key access time (#flash reads per lookup) 

 Preserve log-structured storage organization on flash 
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SkimpyStash: Base Design 

 Resolve hash table collisions 

using linear chaining 

 Multiple keys resolving to a given 

hash table bucket are chained in a 

linked list  

 Storing the linked lists on flash 

itself 

 Preserve log-structured organization 

with later inserted keys pointing to 

earlier keys in the log 
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 Each hash table bucket in RAM contains a pointer to the beginning 

of the linked list on flash 
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SkimpyStash: Page Layout on Flash 

 Logical pages are formed by linking together records on 

possibly different physical pages 

 Hash buckets do not correspond to whole physical pages on flash 

but to logical pages 

 Physical pages on flash contain records from multiple hash buckets 

 Exploits random access nature of flash media 

 No disk-like seek overhead in reading records in a hash bucket 

spread across multiple physical pages on flash 
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Base Design: RAM Space Usage 

 k = average #keys per bucket 

 Critical design parameter 

 (4/k) bytes of RAM per k-v pair 

 Pointer to chain on flash (4 bytes) per slot 

 Example: k=10 

 Average of 5 flash reads per lookup = ~50 usec 

 0.5 bytes in RAM per k-v pair on flash 
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The Tradeoff Curve 
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Base Design: Room for Improvement? 

 Large variations in average lookup times across buckets 

 Skewed distribution in number of keys in each bucket chain 

 Lookups on non-existing keys 

 Require entire bucket (linked list) to be searched on flash 
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Improvement Idea 1:  

Load Balancing across Buckets 

 Two-choice based load 

balancing across buckets 

 Hash each key to two buckets 

and insert in least-loaded bucket 

 1-byte counter per bucket 

 Lookup times double 

 Need to search both buckets 

during lookup 

 Fix? 
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Improvement Idea 2:  

Bloom Filter per Bucket 

 Bloom Filter per Bucket 

 Lookup checks BF before 

searching linked list on flash 

 Sized for ~k keys => k-bytes per 

hash table directory slot 

 Other benefits 

 Lookups on non-existing keys 

faster (almost always no flash 

access) 
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 Benefits from load balancing 

 Balanced chains help to improve BF accuracy (false positives) 

 Symbiotic relationship! 



Enhanced Design: RAM Space Usage 

 k = average #keys per bucket 

 (1 + 5/k) bytes of RAM per k-v pair 

 Pointer to chain on flash (4 bytes) 

 Bucket size (1 byte) 

 Bloom filter (k bytes) 

 Example: k=10 

 Average of 5 flash reads per lookup = ~50 usec 

 1.5 bytes in RAM per k-v pair on flash 
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Hash Table Directory Slot 



Compaction to Improve Read Performance 

 When enough records 

accumulate in a bucket to fill 

a flash page 

 Place them contiguously on  

one or more flash pages          

(m records per page) 

 Average #flash reads per lookup 

= k/2m 

 Garbage created in the log 

 Compaction 

 Updated or deleted records 
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ChunkStash: Speeding Up Storage 

Deduplication using Flash Memory 



Deduplication of Storage 

 Detect and remove duplicate data in storage systems 

 e.g., Across multiple full backups 

 Storage space savings 

 Faster backup completion: Disk I/O and Network bandwidth 

savings 

 Feature offering in many storage systems products 

 Data Domain, EMC, NetApp 

 Backups need to complete over windows of few hours 

 Throughput (MB/sec) important performance metric 

 High-level techniques 

 Content based chunking, detect/store unique chunks only 

 Object/File level, Differential encoding 



Impact of Dedup Savings Across Full 

Backups 

Source: Data Domain white paper 



Content based Chunking  

 Calculate Rabin fingerprint hash for each sliding window 

(16 byte) 
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Content based Chunking   
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Index for Detecting Duplicate Chunks 

 Chunk hash index for identifying duplicate chunks 

 Key = 20-byte SHA-1 hash (or, 32-byte SHA-256) 

 Value = chunk metadata, e.g., length, location on disk 

 Key + Value  64 bytes 

 Essential Operations 

 Lookup (Get) 

 Insert (Set) 

 Need a high performance indexing scheme 

 Chunk metadata too big to fit in RAM 

 Disk IOPS is a bottleneck for disk-based index 

 Duplicate chunk detection bottlenecked by hard disk seek times 

(~10 msec) 



Disk Bottleneck for Identifying Duplicate Chunks 

 20 TB of unique data, average 8 KB chunk size 

 160 GB of storage for full index (2.5 × 109 unique chunks @64 

bytes per chunk metadata)  

 Not cost effective to keep all of this huge index in RAM  

 Backup throughput limited by disk seek times for index 

lookups 

 10ms seek time => 100 chunk lookups per second                

 => 800 KB/sec backup throughput 

 No locality in the key space for chunk hash lookups  

 Prefetching into RAM index mappings for entire container             

to exploit sequential predictability of lookups during 2nd            

and subsequent full backups (Zhu et al., FAST 2008)   

. . . 

Container 



Storage Deduplication Process Schematic 

Chunk Index on HDD Chunk Index on Flash 
  HDD 

 HDD 

(Chunks in currently 

open container) 

(RAM) 

(RAM) 

Chunk 



ChunkStash: Chunk Metadata Store on Flash 
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Chunk metadata organized on flash in log-

structured manner in groups of 1023 chunks => 

64 KB logical page (@64-byte metadata/ chunk) 

Chunk metadata indexed in 

RAM using a specialized space 

efficient hash table 

RAM write buffer for 

chunk mappings in 

currently open container 

Prefetch cache for chunk 

metadata in RAM for sequential 

predictability of chunk lookups 



Performance Evaluation 

 Comparison with disk index based system 

 Disk based index (Zhu08-BDB-HDD) 

 SSD replacement (Zhu08-BDB-SSD) 

 SSD replacement + ChunkStash (ChunkStash-SSD) 

 ChunkStash on hard disk (ChunkStash-HDD) 

 Prefetching of chunk metadata in all systems 

 Three datasets, 2 full backups for each 

BerkeleyDB used as the 

index on HDD/SSD 



Performance Evaluation – Dataset 2 
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Performance Evaluation – Disk IOPS 
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Flash Memory Cost Considerations 

 Chunks occupy an average of 4KB on hard disk 

 Store compressed chunks on hard disk 

 Typical compression ratio of 2:1 

 Flash storage is 1/64-th of hard disk storage 

 64-byte metadata on flash per 4KB occupied space on hard disk 

 Flash investment is about 16% of hard disk cost 

 1/64-th additional storage @10x/GB cost = 16% additional cost  

 Performance/dollar improvement of 22x 

 25x performance at 1.16x cost  

 Further cost reduction by amortizing flash across datasets 

 Store chunk metadata on HDD and preload to flash 
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Summary 

 System builders: Don’t just treat flash as disk replacement 

 Make the OS/application layer aware of flash 

 Exploit its benefits  

 Embrace its peculiarities and design around them 

 Identify applications that can exploit sweet spot between cost and 

performance 

 Device vendors can help by exposing more APIs to the 

software layer for managing storage on flash 

 Can help to squeeze better performance out of flash with 

application knowledge 

 E.g., Trim(), newly proposed ptrim(), exists() from fusionIO   
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Thank You! 

Email: {sudipta, jinl}@microsoft.com 
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