
Flash Memory Aware Software

Architectures and Applications

Sudipta Sengupta and Jin Li
Microsoft Research, Redmond, WA, USA

Contains work that is joint with Biplob Debnath (Univ. of Minnesota)

Flash Memory

 Used for more than a decade in consumer device storage

applications

 Very recent use in desktops and servers

 New access patterns (e.g., random writes) pose new challenges for

delivering sustained high throughput and low latency

 Higher requirements in reliability, performance, data life

 Challenges being addressed at different layers of storage

stack

 Flash device vendors: device driver/ inside device

 System builders: OS and application layers, e.g., Focus of this talk

Slide 2

Flash Aware Applications

 System builders: Don’t just treat flash as disk replacement

 Make the OS/application layer aware of flash

 Exploit its benefits

 Embrace its peculiarities and design around them

 Identify applications that can exploit sweet spot between cost and

performance

 Device vendors: You can help by exposing more APIs to

the software layer for managing storage on flash

 Can help to squeeze better performance out of flash with

application knowledge

Slide 6

Flash for Speeding Up Cloud/Server

Applications

 FlashStore [VLDB 2010]

 High throughput, low latency persistent key-value store using flash as

cache above HDD

 ChunkStash [USENIX ATC 2010]

 Efficient index design on flash for high throughput data deduplication

 BloomFlash [ICDCS 2011]

 Bloom filter design for flash

 SkimpyStash [ACM SIGMOD 2011]

 Key-value store with ultra-low RAM footprint at about 1-byte per k-v pair

 Flash as block level cache above HDD

 Either application managed or OS managed

 SSD buffer pool extension in database server

 SSD caching tier in cloud storage

Slide 7

Flash Memory: Random Writes

 Need to optimize the storage stack for making best use of

flash

 Random writes not efficient on flash media

 Flash Translation Layer (FTL) cannot hide or abstract away device

constraints

Slide 8

FusionIO 160GB ioDrive

3x

134725 134723

49059

17492

0

25000

50000

75000

100000

125000

150000

seq-reads rand-reads seq-writes rand-writes

IO
P

S

FlashStore: High Throughput

Persistent Key-Value Store

Design Goals and Guidelines

 Support low latency, high throughput operations as a key-

value store

 Exploit flash memory properties and work around its

constraints

 Fast random (and sequential) reads

 Reduce random writes

 Non-volatile property

 Low RAM footprint per key independent of key-value pair

size

Slide 10

FlashStore Design: Flash as Cache

 Low-latency, high throughput operations

 Use flash memory as cache between RAM and hard disk

RAM

. . .

RAM

Disk . . .

Flash Memory

Current FlashStore

Disk

(bottlenecked by hard disk

seek times ~ 10msec)
(flash access times are of the

order of 10 -100 µsec)

FlashStore Design: Flash Awareness

 Flash aware data structures and algorithms

 Random writes, in-place updates are expensive on flash memory

 Flash Translation Layer (FTL) cannot hide or abstract away device constraints

 Sequential writes, Random/Sequential reads great!

 Use flash in a log-structured manner

FusionIO 160GB ioDrive

3x

134725 134723

49059

17492

0

25000

50000

75000

100000

125000

150000

seq-reads rand-reads seq-writes rand-writes

IO
P

S

FlashStore Architecture

RAM write buffer for

aggregating writes into flash

RAM read cache for recently

accessed key-value pairs

Key-value pairs on flash indexed in RAM

using a specialized space efficient hash table

Key-value pairs organized on

flash in log-structured manner

Recently unused

key-value pairs

destaged to HDD

FlashStore Design: Low RAM Usage

 High hash table load factors while keeping

lookup times fast

 Collisions resolved using cuckoo hashing

 Key can be in one of K candidate positions

 Later inserted keys can relocate earlier keys to

their other candidate positions

 K candidate positions for key x obtained using

K hash functions h1(x), …, hK(x)

 In practice, two hash functions can simulate K

hash functions using hi(x) = g1(x) + i*g2(x)

 System uses value of K=16 and targets

90% hash table load factor

Insert X

Low RAM Usage: Compact Key

Signatures

 Compact key signatures stored in hash table

 2-byte key signature (vs. key length size bytes)

 Key x stored at its candidate position i derives its signature from

hi(x)

 False flash read probability < 0.01%

 Total 6-10 bytes per entry (4-8 byte flash pointer)

 Related work on key-value stores on flash media

 MicroHash, FlashDB, FAWN, BufferHash

Slide 18

FlashStore Performance Evaluation

 Hardware Platform

 Intel Processor, 4GB RAM, 7200 RPM Disk, fusionIO SSD

 Cost without flash = $1200

 Cost of fusionIO 80GB SLC SSD = $2200 (circa 2009)

 Trace

 Xbox LIVE Primetime

 Storage Deduplication

FlashStore Performance Evaluation

 How much better than simple hard disk replacement with

flash?

 Impact of flash aware data structures and algorithms in FlashStore

 Comparison with flash unaware key-value store

 FlashStore-SSD

 BerkeleyDB-HDD

 BerkeleyDB-SSD

 FlashStore-SSD-HDD (evaluate impact of flash recycling activity)

Slide 22

BerkeleyDB used as the flash

unaware index on HDD/SSD

Throughput (get-set ops/sec)

Slide 23

5x 8x

60x

24x

Performance per Dollar

 From BerkeleyDB-HDD to FlashStore-SSD

 Throughput improvement of ~ 40x

 Flash investment = 50% of HDD capacity (example)

 = 5x of HDD cost (assuming flash costs 10x per GB)

 Throughput/dollar improvement of about 40/6 ~ 7x

Slide 24

SkimpyStash: Ultra-Low RAM

Footprint Key-Value Store on Flash

Aggressive Design Goal for RAM Usage

 Target ~1 byte of RAM usage per key-value pair on flash

 Tradeoff with key access time (#flash reads per lookup)

 Preserve log-structured storage organization on flash

Slide 28

SkimpyStash: Base Design

 Resolve hash table collisions

using linear chaining

 Multiple keys resolving to a given

hash table bucket are chained in a

linked list

 Storing the linked lists on flash

itself

 Preserve log-structured organization

with later inserted keys pointing to

earlier keys in the log

Slide 29

 Each hash table bucket in RAM contains a pointer to the beginning

of the linked list on flash

Slide 30

key value

RAM

Flash Memory

key value

key value

key value

.

.

.
.

.

.
key value

key value
Hash table

directory

Sequential log

null

null

null

Keys

ordered

by write

time in

log

ptr

SkimpyStash: Page Layout on Flash

 Logical pages are formed by linking together records on

possibly different physical pages

 Hash buckets do not correspond to whole physical pages on flash

but to logical pages

 Physical pages on flash contain records from multiple hash buckets

 Exploits random access nature of flash media

 No disk-like seek overhead in reading records in a hash bucket

spread across multiple physical pages on flash

Slide 31

Base Design: RAM Space Usage

 k = average #keys per bucket

 Critical design parameter

 (4/k) bytes of RAM per k-v pair

 Pointer to chain on flash (4 bytes) per slot

 Example: k=10

 Average of 5 flash reads per lookup = ~50 usec

 0.5 bytes in RAM per k-v pair on flash

Slide 33

The Tradeoff Curve

Slide 34

Base Design: Room for Improvement?

 Large variations in average lookup times across buckets

 Skewed distribution in number of keys in each bucket chain

 Lookups on non-existing keys

 Require entire bucket (linked list) to be searched on flash

Slide 35

Improvement Idea 1:

Load Balancing across Buckets

 Two-choice based load

balancing across buckets

 Hash each key to two buckets

and insert in least-loaded bucket

 1-byte counter per bucket

 Lookup times double

 Need to search both buckets

during lookup

 Fix?

Slide 36

Improvement Idea 2:

Bloom Filter per Bucket

 Bloom Filter per Bucket

 Lookup checks BF before

searching linked list on flash

 Sized for ~k keys => k-bytes per

hash table directory slot

 Other benefits

 Lookups on non-existing keys

faster (almost always no flash

access)

Slide 37

 Benefits from load balancing

 Balanced chains help to improve BF accuracy (false positives)

 Symbiotic relationship!

Enhanced Design: RAM Space Usage

 k = average #keys per bucket

 (1 + 5/k) bytes of RAM per k-v pair

 Pointer to chain on flash (4 bytes)

 Bucket size (1 byte)

 Bloom filter (k bytes)

 Example: k=10

 Average of 5 flash reads per lookup = ~50 usec

 1.5 bytes in RAM per k-v pair on flash

Slide 38

Hash Table Directory Slot

Compaction to Improve Read Performance

 When enough records

accumulate in a bucket to fill

a flash page

 Place them contiguously on

one or more flash pages

(m records per page)

 Average #flash reads per lookup

= k/2m

 Garbage created in the log

 Compaction

 Updated or deleted records

Slide 39

ChunkStash: Speeding Up Storage

Deduplication using Flash Memory

Deduplication of Storage

 Detect and remove duplicate data in storage systems

 e.g., Across multiple full backups

 Storage space savings

 Faster backup completion: Disk I/O and Network bandwidth

savings

 Feature offering in many storage systems products

 Data Domain, EMC, NetApp

 Backups need to complete over windows of few hours

 Throughput (MB/sec) important performance metric

 High-level techniques

 Content based chunking, detect/store unique chunks only

 Object/File level, Differential encoding

Impact of Dedup Savings Across Full

Backups

Source: Data Domain white paper

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Declare a chunk boundary

If Hash matches a particular pattern,

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Declare a chunk boundary

If Hash matches a particular pattern,

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Declare a chunk boundary

If Hash matches a particular pattern,

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

Declare a chunk boundary

If Hash matches a particular pattern,

Content based Chunking

 Calculate Rabin fingerprint hash for each sliding window

(16 byte)

101

010

100

101

000

000

001

010

010

010

101

010

010

101

010

101

010

100

110

101

-4

-2

0

2

4

0 2 4 6

Hash

3 Chunks

Declare a chunk boundary

If Hash matches a particular pattern,

Index for Detecting Duplicate Chunks

 Chunk hash index for identifying duplicate chunks

 Key = 20-byte SHA-1 hash (or, 32-byte SHA-256)

 Value = chunk metadata, e.g., length, location on disk

 Key + Value 64 bytes

 Essential Operations

 Lookup (Get)

 Insert (Set)

 Need a high performance indexing scheme

 Chunk metadata too big to fit in RAM

 Disk IOPS is a bottleneck for disk-based index

 Duplicate chunk detection bottlenecked by hard disk seek times

(~10 msec)

Disk Bottleneck for Identifying Duplicate Chunks

 20 TB of unique data, average 8 KB chunk size

 160 GB of storage for full index (2.5 × 109 unique chunks @64

bytes per chunk metadata)

 Not cost effective to keep all of this huge index in RAM

 Backup throughput limited by disk seek times for index

lookups

 10ms seek time => 100 chunk lookups per second

 => 800 KB/sec backup throughput

 No locality in the key space for chunk hash lookups

 Prefetching into RAM index mappings for entire container

to exploit sequential predictability of lookups during 2nd

and subsequent full backups (Zhu et al., FAST 2008)

. . .

Container

Storage Deduplication Process Schematic

Chunk Index on HDD Chunk Index on Flash
 HDD

 HDD

(Chunks in currently

open container)

(RAM)

(RAM)

Chunk

ChunkStash: Chunk Metadata Store on Flash

Slide 68

Chunk metadata organized on flash in log-

structured manner in groups of 1023 chunks =>

64 KB logical page (@64-byte metadata/ chunk)

Chunk metadata indexed in

RAM using a specialized space

efficient hash table

RAM write buffer for

chunk mappings in

currently open container

Prefetch cache for chunk

metadata in RAM for sequential

predictability of chunk lookups

Performance Evaluation

 Comparison with disk index based system

 Disk based index (Zhu08-BDB-HDD)

 SSD replacement (Zhu08-BDB-SSD)

 SSD replacement + ChunkStash (ChunkStash-SSD)

 ChunkStash on hard disk (ChunkStash-HDD)

 Prefetching of chunk metadata in all systems

 Three datasets, 2 full backups for each

BerkeleyDB used as the

index on HDD/SSD

Performance Evaluation – Dataset 2

Slide 75

65x
3.5x

25x 3x

1.8x

1.2x

Performance Evaluation – Disk IOPS

Slide 77

Flash Memory Cost Considerations

 Chunks occupy an average of 4KB on hard disk

 Store compressed chunks on hard disk

 Typical compression ratio of 2:1

 Flash storage is 1/64-th of hard disk storage

 64-byte metadata on flash per 4KB occupied space on hard disk

 Flash investment is about 16% of hard disk cost

 1/64-th additional storage @10x/GB cost = 16% additional cost

 Performance/dollar improvement of 22x

 25x performance at 1.16x cost

 Further cost reduction by amortizing flash across datasets

 Store chunk metadata on HDD and preload to flash

Slide 80

Summary

 System builders: Don’t just treat flash as disk replacement

 Make the OS/application layer aware of flash

 Exploit its benefits

 Embrace its peculiarities and design around them

 Identify applications that can exploit sweet spot between cost and

performance

 Device vendors can help by exposing more APIs to the

software layer for managing storage on flash

 Can help to squeeze better performance out of flash with

application knowledge

 E.g., Trim(), newly proposed ptrim(), exists() from fusionIO

Slide 82

Thank You!

Email: {sudipta, jinl}@microsoft.com

Slide 83

