



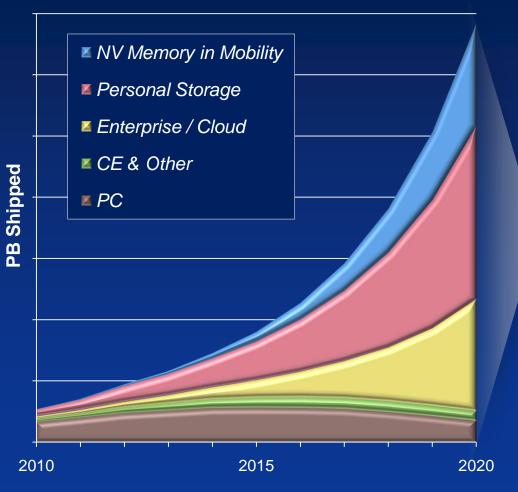
# SAS SSDs – Building Blocks for High-Performance Enterprise Storage

## Brendan Collins VP Product Marketing

### August 2011



### **Cloud Changes Storage Dynamics**




Source: HGST Market Research based on publicly available websites, interviews and industry reports.





#### Storage Growth Forecast





Source: Hitachi GST





### **Drivers for High-Performance Storage**

Several system and application drivers are increasing the demand for high-performance storage solutions going forward

Large-Scale Transaction Processing, Traditional and Web 2.0

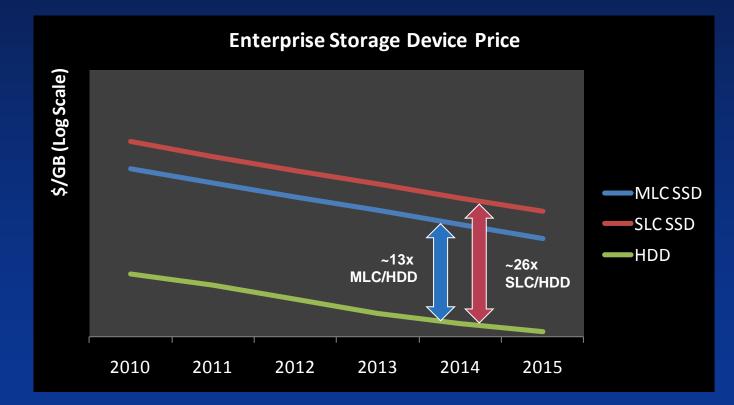


Digital Media Distribution incl. On-Demand Streaming 'Big Data' Management incl. Meta Data, Indexing

Multitasking & Multitenancy, incl. Cloud Computing

 Increase in randomness of IOs at the storage device level

- Increase in average throughput requirements
- Increase in latency and command completion time requirements


Business Intelligence: Data Warehousing / Data Mining

Storage devices utilizing non-volatile memories are uniquely positioned to close the 'IO Gap' and deliver these high-performance storage solutions



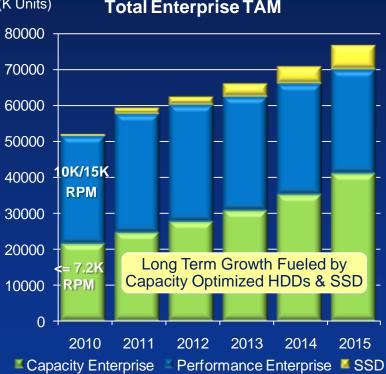


Enterprise SSDs will continue to carry a significant \$/GB multiple over Enterprise HDDs – SSDs will be deployed where performance justified



#### Note: HDD = 2.5" 10K RPM & 15K RPM HDD

Source: Hitachi GST Estimates


Santa Clara, CA August 2011

nspire the <u>Nexi</u>





### **Enterprise Market Forecast**

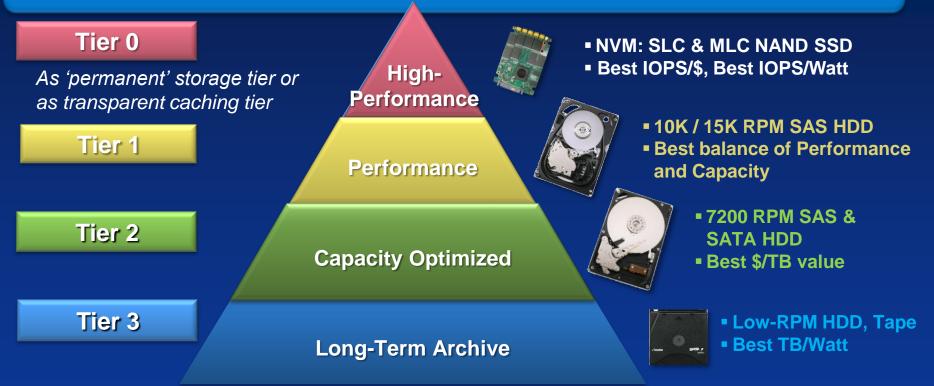






2010 2011 2012 2013 2014 2015




2010 2011 2012 2013 2014 2015

#### Source: Hitachi GST





Storage solutions will deploy a combination of highly-optimized storage devices to strike the appropriate balance between performance and cost



A given storage solution may not implement all tiers and tiers may be split across systems or locations – e.g. a local Tier 0 Gateway combined with Tier 2 Cloud Storage





### **NAND Flash Component Outlook**

Conventional NAND technology is expected to scale into 1xnm, providing a media roadmap for future Enterprise SSDs generations into 2015

#### NAND Flash Mass Production Dates

| 2009                                 | 2010                                                          | 2011        | 2012                                        | 2013   | 2014                    | 2015 |  |
|--------------------------------------|---------------------------------------------------------------|-------------|---------------------------------------------|--------|-------------------------|------|--|
| 34/32<br>nm nm<br>Card Client<br>SSD | 34/32<br>nm<br>ENT<br>SSD<br>25/24<br>nm<br>Card Clien<br>SSD | nm<br>t ENT | 20/19 20/1<br>nm nm<br>Client EN<br>SSD SSL | t<br>t | 1x<br>nm<br>ENT<br>S\$D |      |  |

#### **Enterprise SSD Product Generations**

SSD Qual. SSD High-Volume Shipments
SSD Qual. SSD High-Volume Shipments
SSD Qual. SSD High-Volume Shipments
SSD Qual. SSD Hy Shipments

#### Source: Hitachi GST Estimates





### **SLC & MLC For Enterprise Applications**

### MLC will emerge as a more cost-effective NAND media option for Enterprise applications this year



### Key Take-Aways

- MLC will deliver performance close to SLC at significantly lower cost
- MLC write endurance is appropriate for a 3-5 year product life in the majority of Enterprise applications
- SLC is the more economic NAND choice for applications with very high write work-loads

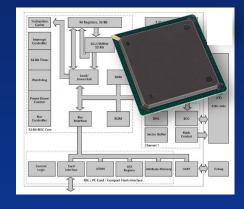
\* Note: Depending on workload IO size and queue depth Source: Hitachi GST estimates





### Anatomy of an Enterprise SSD

When considering various SSD offerings, it is important to remember the fundamental ingredients of an SSD


### Drive Interface (SSD Controller)



System integration, scaling and high-availability needs

Santa Clara, CA August 2011

#### Enterprise Reliability (SSD Controller)



### **NAND** Array



Full set of Enterprise requirements, especially reliability and error recovery NAND investment determined by amount of NAND and type of NAND





### **Enterprise SSD – Interface Choices**

For a given internal or external Enterprise storage system, numerous factors need to be considered to chose the most appropriate SSD interface

| Interface                   | SATA             | SAS                                     | PCle                                                         |
|-----------------------------|------------------|-----------------------------------------|--------------------------------------------------------------|
| Command Set                 | ATA              | SCSI                                    | Proprietary or NVM Express or<br>SCIS-over-PCIe              |
| Main Form Factor            | 2.5"             | 2.5", Others?                           | 2.5", Cards                                                  |
| Mad Device Power            | 9W               | 9W Dual Port /<br>25W MultiLink SAS?    | 25W                                                          |
| Transport<br>Bandwidth      | 6 Gb / Port      | 6Gb / Port  -><br>12Gb / Port           | 4Gb / Lane -><br>8Gb / Lane                                  |
| Interface<br>Configurations | Single Port      | Dual Port /<br>MultiLink SAS Four Ports | Four / Eight Lanes                                           |
| Standardization             | INCITS / SATA-IO | INCITS / STA                            | Vendor Specific; NVM Express<br>Group, INCITS / STA; PCI-SIG |
| Product<br>Availability     | Now              | Two Port: Now<br>MultiLink SAS: TBD     | Proprietary: Now;<br>NVM Express: TBD; SOP: TBD              |

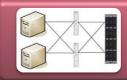




### SAS SSD – A Mature Building Block

# SAS SSDs enjoy the Enterprise maturity and support of the well-established SAS eco-system




### Maturity & Interoperability

'Drop-In' support in all major Enterprise system environments



### Scalability

Scales up to hundreds of drives with multi-port controllers & expanders



### **High-Availability**

Dual-port drives, T10 DIF, hot-plug support, cost-effective redundancy options using RAID controllers



#### **Technology Roadmap** 12Gb SAS and Multi-Link SAS



### **Standardization & Industry Support**

Track record of effective standardization in INCITS; broad set of industry offerings





Application needs associated with certain Enterprise system segments typically lead to an SSD product preference



Santa Clara, CA August 2011





### **SAS SSD – Measuring Today's Solutions**

The server test configuration consists of widely available, industry-standard components



### **Industry-Standard Server**

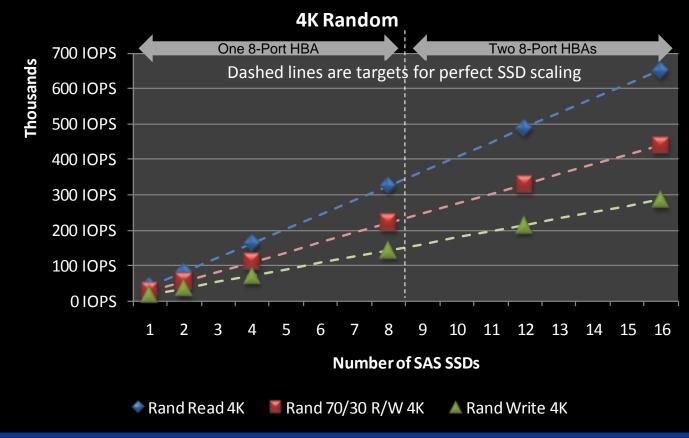


- 100/200/400GB SLC
- SAS 6Gb and FCAL 4Gb
- Leading Enterprise feature set and reliability

### Hitachi Ultrastar™ SSD400S Solid State Drives

### SAS HBA or RAID Controller

Other system configuration items: Windows Server 2008 R2, iometer 2007; 6Gb SAS, single port / SSD SSD configuration: SSD completely full, access is full drive volume, all performance is sustained steady-state *Note: Trademarks are the property of their respective owners.* 


Santa Clara, CA August 2011

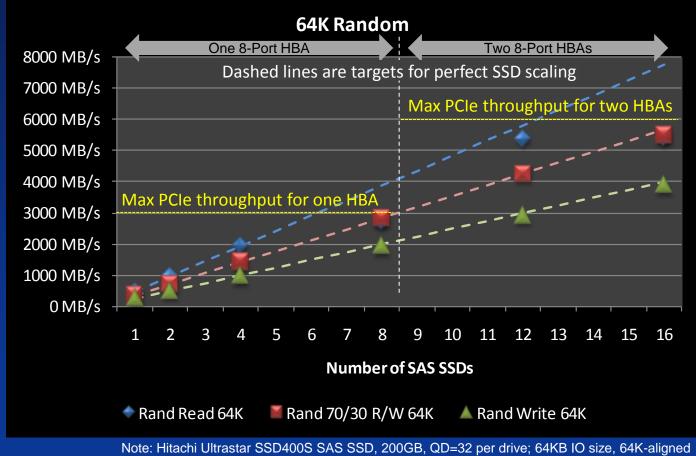




### SAS SSD Scaling Example–Small Random IO

SAS SSDs connected to a multi-port SAS HBA show perfect performance scaling for small random IO




Note: Hitachi Ultrastar SSD400S SAS SSD, 200GB, QD=32 per drive; 4KB IO size, 4K-aligned



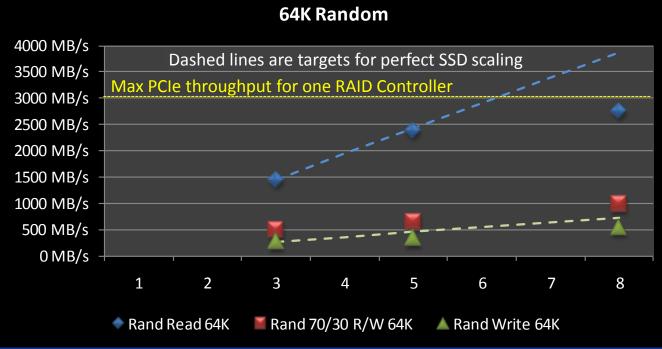


### SAS SSD Scaling Example – Large Random IO

SAS SSDs connected to a multi-port SAS HBA show performance scaling for large random IO up to the max throughput limit of the HBA







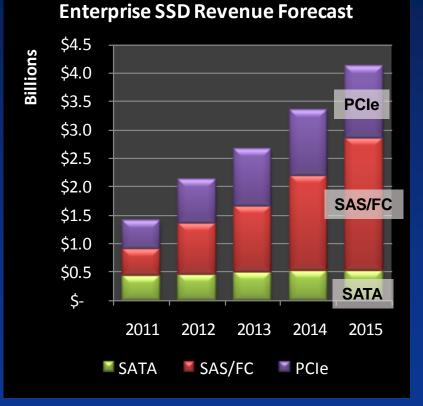

### **SAS SSD Redundancy Option – RAID 5**

SAS SSDs in RAID 5 deliver cost-effective, high-performance solutions for applications with high read mix where redundancy is a requirement

#### **RAID 5 targets for perfect SSD scaling:**

- Read : (Number of SSDs) \* Read Performance of a Single SSD
- Write : ~ (Number of SSDs) \* 50/50 Read/Write Performance of a Single SSD / 4




Note: One 8-port RAID Controller, Hitachi Ultrastar SSD400S SAS SSD, 200GB, QD=32 per drive; 64KB IO size, 64K-aligned



Flash Memory

### SAS SSD – The Preferred Enterprise SSD 'Building Block'

- New applications & virtualization increases the randomness of IOs, demanding highperformance storage
- "One Size Does Not Fit All": Storage solutions will be tiered to strike a balance between performance and cost
- When selecting an Enterprise SSD, the maturity and capabilities of the host interface and the SSD controller are as critical as the NAND memory
- SAS SSDs are expected to be the preferred, most broadly applicable 'building block' for high-performance Enterprise storage solutions going forward



Source: Hitachi GST Estimates



# HITACHI Inspire the Next

**@Hitachi Global Storage Technologies**