

Flash Security - Future Trends in Technologies and Standards

Devesh Ahuja Vijay Ahuja CIPHER SOLUTIONS, Inc.

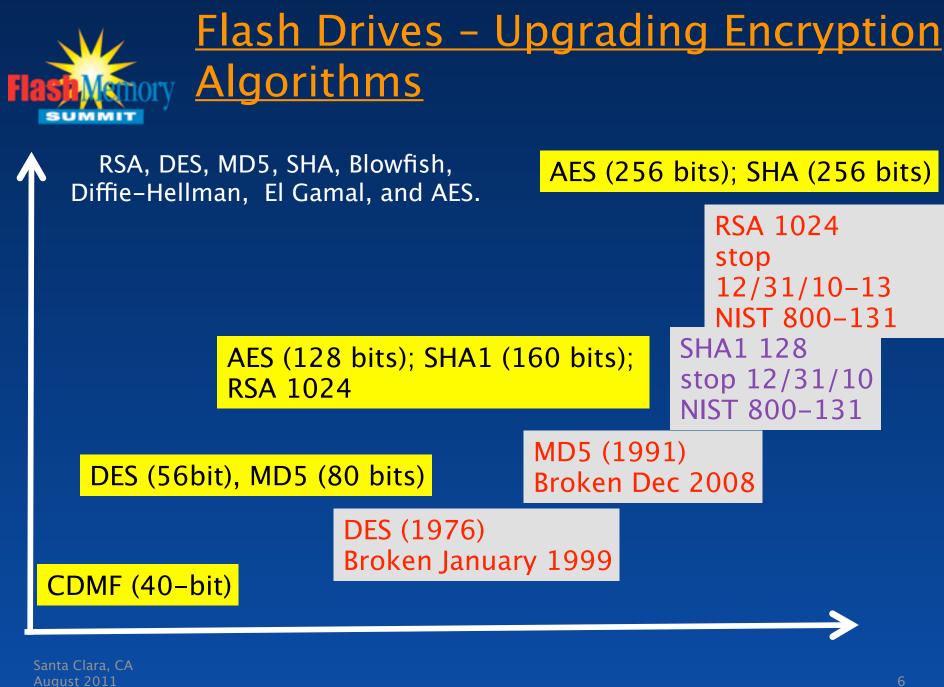
- <u>Authentication</u>
- Data Encryption
- Access Control
 - Port Controls
 - Audit Logs
- Intercept Malware !!!!! both ways
 - Download updates on real-time basis (Ex: Windows)

- Authenticate the User, the Server, the device
 - Strong Authentication
 - 2-Factor
 - SecureID
 - Biometrics:
 - Thumbprint
 - Signatures
 - Retina
 - Phone Factor
 - PKI based authentication later

- Encryption Algorithms
 - Code base
 - Upgrading algorithms in the field
- Key Management
 - Key Renewal
 - Key Backup
 - Key Recovery
 - Secure Key Storage
- Key lengths
 - Moving targets

Mostly Certificates have a validity period of 1 or 2 years

Flash Keys have a life cycle of 4-5 Years?


Key Management Issues – Keys needed for many Years

- Key retention for stored data years
 - Even after the Algorithm is deprecated
- Keys are NOT easy to upgrade
- Keys are not easy to be:
 - Secured
 - Available
 - Backed-up (HSM usage)
- Key management technologies do not address the issue of aging
 - Key & Algorithm refresh every 5? Years
 - To resist brute-force attacks
- Secured keys are often as secure as passwords (+ Tokens!!)
- Backed up Keys help but introduce new issues

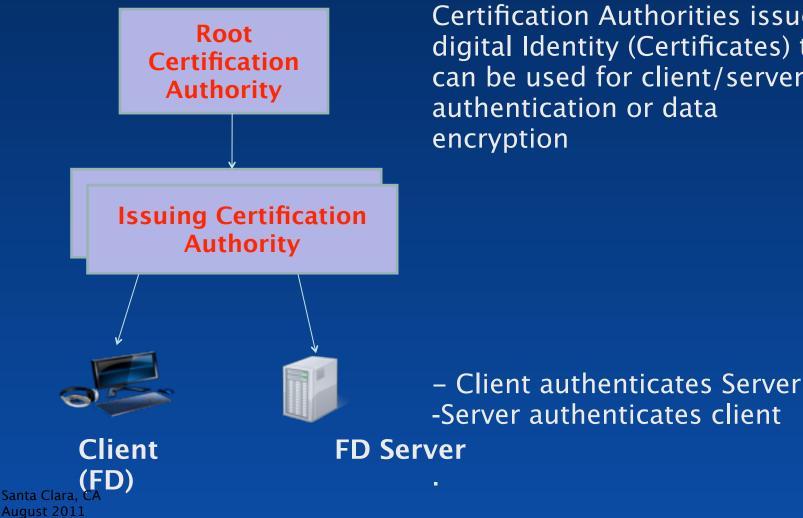
August 05t keys may be as bad as losing data

Monday, August 15, 2011

Audit Logs to be available for 7 years Mortgage records for 30 years

NIST 800-131A February 2011

ALGORITHM	SIZES	EQUIVALENT STRENGTH
RSA	Acceptable through 2010 Deprecated 2011-2013 Disallowed after 2013	1024 bits
Two-key Triple DES Encryption	Restricted use from 2011 through 2015	80 bits
Two-key Triple DES Decryption	Acceptable through 2010 Legacy use after 2010	80 bits
Three-key Triple		112 bits
SKIPJACK Encryption/	WAS Acceptable through 2010	80 bits
AES-128 Encryption and Decryption		128 bits
AES-192 Encryption and Decryption		192 bits
AES-256 Encryption and Decryption Santa Clara, CA August 2011	Acceptable	256 bits 7



Example – PKI Certificate Signing Keys: SHA1 (128) –> 224/256 bits

- If a CA signs a Certificate with SHA 2, and the Relying Party (e.g. Web Servers) cannot handle SHA 2, the authentication fails
- Need to test various combos of:
 - End user Certificate
 - CA's OCSP/CRL signing certificate
 - Issuing CA's End-entity Signing Certificate (Trust Chain to be all SHA2)
 - Relying Party's capability to verify SHA2 signatures
- Confusion between 224 and 256 bit SHA 2 !!!

PKI: Public Key Infrastructure for Flash

Certification Authorities issue digital Identity (Certificates) that can be used for client/server authentication or data

PKI Infrastructure – Uses in Flash

- Support Strong Authentication
 - Private Key-based
 - Verify the Trust-chain
 - Verify the Certificate Issuer
 - Verify the Certificate status (CRL/OCSP)
- Means to exchange encrypted data between entities
 - Using Public/Private Keys
 - Exchange Symmetric Keys use Public/Private Keys (e.g. SSL)
- Communicate within your Trust Anchor
- Communicate outside your Trust Anchor
 - Trust Stores
 - Cross-Certification

• Signing Code/Updates for distribution using Certificates August 2011

ry Steps to Implement PKI – Cipher

- 1. Trust Requirements
- 2. Design Trust Hierarchy
- 3. Deploy Secure environment for PKI
- 4. Develop CP and CPS
- 5. Document Certificate Profiles, Procedures
- 6. Implement Prototype and Production Record Process
- 7. Ensure auditability

Thank You

Cipher Solutions, Inc. "Securing Storage for last 10 Years" <u>www.CipherSolutions.com</u> <u>info@CipherSolutions.com</u> 919-848-3040

