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• NAND Flash physical requirements
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A Brief History of Data Removal

• In early storage protocols, functions existed to read and 
write data, but not to remove it

• Deleted data typically remains on storage media after it is 
no longer needed
• The file’s index record is partially overwritten
• The file’s data is not overwritten
• Whole industry exists to recover deleted files or to protect 

against accidental deletion

• Volume/partition reformatting and deletion also does not 
remove previous data

• Focus of these operating systems is not security, but 
rather to protect the user from unintentionally removing 
wanted data

• Data sanitization focuses on removing data permanently 
from the storage media

Santa Clara, CA
August 2011 4

Monday, August 15, 2011



Data Sanitization Methods

• Clearing
• Previous data may still be recoverable through laboratory attack
• Data overwriting
• Media is reusable

• Purging
• Prevents laboratory attack to recover data
• SECURE ERASE (for ATA disks)
• Media may or may not be reusable

• Physical destruction
• Disintegration, incineration, pulverization, melting, and 

shredding
• Media is no longer reusable

• How do these methods relate to NAND Flash-based 
storage?Santa Clara, CA

August 2011 5

Source: NIST 800-88, Table 2-1,  p. 8

Monday, August 15, 2011



NAND Flash Physical 
Requirements

• NAND Flash requires block management
• Erase blocks of data, consisting of multiple 

pages
• Changes a logical 0 to a logical 1 for all of the 

cells in the block
• Program pages within 

a block in sequential 
order

• Changes a logical 1 to 
a logical 0

• When reusing a page,
it must be erased first
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Block Management

• Block management is used to make sure 
NAND physical requirements are met

• The Flash translation layer translates host 
addresses (logical) to NAND addresses 
(physical)
• Software running on a host operating system 
• Firmware running on a NAND controller
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Block Management Today

• Block management algorithms have become 
more complex as block sizes have increased
• Typical data sizes are still 512B or 4KB
• Page sizes are moving to 8KB or 16KB for SSDs
• Block management algorithms are optimized for 

sequential throughput 
and IOPS

• More data fragments 
remain on the media 
through use
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Data Overwriting

• For hard disk drives (HDDs), the primary method to 
clear individual files was through data overwriting

• Sensitive data is overwritten with one or more data 
patterns to remove it

• Residual data may still be recoverable if overwritten 
only once (though unlikely with today’s HDDs)

• Data overwriting applications/algorithms were 
developed around direct addressing—an LBA points 
to the same physical location for every write

• Securely deleting a file is typically a tradeoff of 
thoroughness (number of passes) and performance 
(time)Santa Clara, CA
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Data Overwriting with NAND 
Flash

• Because of block management, data overwriting is not effective 
to clear individual LBAs of data

• NAND Flash uses indirect addressing—an LBA points to a 
different physical location for every write

• This results in multiple copies of the data existing
• Current version
• Older versions

• Older versions are eventually discarded when the blocks they 
reside in no longer have valid data in them and are erased

• Data overwriting is mostly effective if the entire drive is 
overwritten, but some previous data typically remains in hidden 
blocks and can be recovered through laboratory attack

• Typically less sophisticated to recover than an HDD data overwrite
• Slow
• Risk is proportional to the amount of overprovisioningSanta Clara, CA

August 2011 10

Monday, August 15, 2011



Secure Erase

• Secure erase was developed to 
permanently purge all data from HDDs, 
including areas not directly addressable

• Secure erase implemented on many SSDs

• e·MMC has adapted secure erase to purge 
data from portions of the memory device
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Secure Erase and Block 
Management

• If purging a portion of the media, a host-issued SECURE 
ERASE command would be responsible for the following 
NAND functions
• Identify all physical copies of data (current and previous) 

representing a host LBA or LBA range
• Copy/move all good, valid data around the data to be purged to 

new locations
• Properly erase the blocks

• Time is required to perform the block management 
function of identifying all copies of a particular LBA and 
consolidating valid data

• If purging all drive data, then SECURE ERASE is fairly quick 
because no block consolidation needs to occur
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Removing Residual Data

• Can data be purged from the NAND Flash 
to prevent recovery through a laboratory 
attack?

• This requires a better understanding of 
the NAND PAGE PROGRAM and BLOCK 
ERASE commands
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NAND Flash Cell Fundamentals

• 1s and 0s are represented by the number of 
electrons stored on the NAND floating gate

• Working number of 
electrons on each 
floating gate is 
decreasing as NAND 
process shrinks

• Becomes harder to
discern bit states
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Single-Level Cell (SLC) NAND 
Flash

• Each NAND cell is mapped to one NAND 
page

• Needs fewer working electrons than MLC to 
distinguish bit states

• Programming increases effective voltage on 
cells

• Only two states represented: 1, 0
• Bits states use wider cell distributions than 

MLC
• One-step program process
• Faster to program and erase than MLC—less 

precise

Santa Clara, CA
August 2011 15

“1
”

Monday, August 15, 2011



Single-Level Cell (SLC) NAND 
Flash

• Each NAND cell is mapped to one NAND 
page

• Needs fewer working electrons than MLC to 
distinguish bit states

• Programming increases effective voltage on 
cells

• Only two states represented: 1, 0
• Bits states use wider cell distributions than 

MLC
• One-step program process
• Faster to program and erase than MLC—less 

precise

Santa Clara, CA
August 2011 15

“1
”

“0
”

Monday, August 15, 2011



2-Bit Multiple-level Cell (MLC) 
NAND Flash

• Each NAND cell is mapped to two NAND pages
• Needs more working electrons than SLC to 

distinguish bit states
• Programming increases effective voltage on cells
• Four states represented: 11, 10, 00, 01
• Bits states use narrower cell distributions than 

SLC
• Two-step program process: fast page then slow 

page
• Slower to program and erase than SLC—more 

precise placement required

Santa Clara, CA
August 2011 16

“11
”

Monday, August 15, 2011



2-Bit Multiple-level Cell (MLC) 
NAND Flash

• Each NAND cell is mapped to two NAND pages
• Needs more working electrons than SLC to 

distinguish bit states
• Programming increases effective voltage on cells
• Four states represented: 11, 10, 00, 01
• Bits states use narrower cell distributions than 

SLC
• Two-step program process: fast page then slow 

page
• Slower to program and erase than SLC—more 

precise placement required

Santa Clara, CA
August 2011 16

“11
”

Monday, August 15, 2011



Goals of a BLOCK ERASE 
Operation

• Decrease effective voltage on all cells by 
removing electrons from the floating gate

• Increase effective voltages on deeply 
erased cells
• Tightens erase distribution
• Significantly reduces possibility of data 

recovery through laboratory attack
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MLC NAND Flash Block Erase 
Algorithm

• MLC NAND Flash block erase algorithms already 
prevent laboratory attack, especially on the 
latest process nodes
• Pre-erase data compaction brings all cells in the block 

to a close level
• Post-erase data compaction adds electrons to deeply 

erased cells

• Does not require host involvement and occurs 
during the typical tBERS

• Note: Not all NAND vendors erase MLC NAND 
Flash with the same algorithms
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SLC NAND Flash Block Erase 
Algorithm

• The SLC block erase algorithm is typically shorter 
than the MLC block erase, though moving toward 
MLC algorithms

• The typical SLC block erase for 20­30nm process 
nodes should adequately purge the cells within a 
NAND block

• For older NAND technology, the host may need to 
assist the NAND in purging residual data
• Erase the block (optional)
• Program all of the pages in the block to solid zeros
• Erase the block
• Can add an additional ~40ms to erase time
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Myths: TRIM or “Super Voltage”

• TRIM is a command tells a drive which LBAs are 
no longer needed on a drive
• Drives can discard unneeded data during block 

management
• Improves performance
• Reduces write amplification

• Method of implementation on the NAND physical level 
is controller/firmware specific

• TRIM does not guarantee old data removal because of 
its indeterminate nature

• Occasionally I get questions on destroying 
NAND Flash using a “Super Voltage”
• Not guaranteed to destroy NAND Flash or to eliminate 

data in the array
Santa Clara, CA
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Sanitization Summary for NAND 
Flash

• For sanitization of all data
• Data overwriting clears data, but some data may remain in NAND 

blocks used for overprovisioning
• Secure erase (if implemented at host interface) purges data from 

all NAND blocks with user data

• For sanitization of individual files
• Data overwriting is ineffective—very likely to keep previous 

copies of data to be removed, especially if the drive is not 
already full

• Secure erase or secure delete only works if block management 
consolidates good data from data to be removed and uses block 
erase to purge the old data

• Effectiveness of data purging is also dependent on the 
effectiveness of the BLOCK ERASE command
• Latest 20­30nm SLC and MLC process nodes sufficiently purge 

data
• Laboratory attack may be possible on older NAND process nodesSanta Clara, CA
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Questions?
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Revisit the Micron FMS presentations at www.micron.com/
fms
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