

NVMHCI: The Optimized Interface for Caches and SSDs

Amber Huffman Intel

Agenda

Hidden Costs of Emulating Hard Drives

An Optimized Interface for Caches and SSDs

- Serial ATA SSDs take advantage of existing infrastructure to effectively bring SSDs to market
 - Slots are there, software is there
- However, Serial ATA SSDs are emulating hard drives which carries hidden costs
 - Complexity of the ATA command set
 - Tunneling over Serial ATA (an unnecessary intervening bus)
- There is also a power/latency penalty from tunneling over SATA
 - Roughly 200 mW during active transfers
 - Latency penalty of 10 µs to 10 milliseconds when coming out of a low power interface state to resume commands

What are the hidden costs in terms of performance and complexity of emulating HDDs?

- ATA (AT Attachment) defines the standard command set for hard drives
 - ATA was first developed by the X3T9.2 group starting in 1986
- ATA has adapted over the past 20 years to continue to serve the needs of the HDD industry
 - Features to serve industry needs (queuing, security, power management)
 - New commands or changes to commands to evolve with hard drives (e.g. CHS addressing to LBA addressing)

Portion of foreword from ATA-1 standard

This standard defines the AT Attachment Interface. This standard defines an integrated bus interface between disk drives and host processors. It provides a common point of attachment for systems manufacturers, system integrators, and suppliers of intelligent peripherals.

This standard was developed by Task Group X3T9.2 of Accredited Standards Committee X3 during 1986-90. The standards approval process started in 1991. This document includes annexes which are informative and are not considered par of the standard.

Santa Clara, CA USA August 2008 With the 20 year evolution of ATA, there is naturally a legacy burden

- ATA-8 has well over 50 commands
 - Note that only a subset are mandatory (e.g. there are 4 mandatory read commands)
- Due to legacy infrastructure, devices are forced to continue to support unnecessary commands like PIO reads and writes
- This adds burden to SSD firmware designs: additional commands to support, additional code space consumed, additional latency to decode a more complex command set

	ATA-7 Hard Dr	ive Commands	
Read Commands	Write Commands	Power Management	Other
READ BUFFER	WRITE BUFFER	CHECK POWER MODE	CONFIGURE STREAM
READ DMA	WRITE DMA	IDLE	DEVICE CONFIGURATION
READ DMA EXT	WRITE DMA EXT	IDLE IMMEDIATE	DOWNLOAD MICROCODE
	WRITE DMA FUA EXT	SLEEP	EXECUTE DEVICE DIAGNOSTIC
READ DMA QUEUED	WRITE DMA QUEUED	STANDBY	FLUSH CACHE
READ DMA QUEUED EXT	WRITE DMA QUEUED EXT	STANDBY IMMEDIATE	FLUSH CACHE EXT
	WRITE DMA QUEUED FUA EXT		IDENTIFY DEVICE
READ FPDMA QUEUED	WRITE FPDMA QUEUED		NOP
READ MULTIPLE	WRITE MULTIPLE		READ LOG EXT
READ MULTIPLE EXT	WRITE MULTIPLE EXT		READ NATIVE MAX ADDRESS
	WRITE MULTIPLE FUA EXT		READ NATIVE MAX ADDRESS EXT
READ SECTOR(S)	WRITE SECTOR(S)		SERVICE
READ SECTOR(S) EXT	WRITE SECTOR(S) EXT		SET FEATURES
READ STREAM DMA EXT	WRITE STREAM DMA EXT		SET MAX ADDRESS
READ STREAM EXT	WRITE STREAM EXT		SET MAX ADDRESS EXT
READ VERIFY SECTOR(S)			SET MULTIPLE MODE
READ VERIFY SECTOR(S) EXT			SMART
			WRITE LOG EXT

- Serial ATA Native Command Queuing is the highest performance read protocol for SATA SSDs
 - Up to 32 read/write commands may be outstanding to the device, allowing for increased bus efficiency and re-ordering optimizations
- Each NCQ Read command includes:
 - H2D Register FIS to communicate Read FPDMA Queued command
 - D2H Register FIS to accept the command
 - DMA Setup FIS to setup DMA context for data transfer
 - Data FIS with up to 8KB of data per frame
 - Set Device Bits FIS to complete the command

Timestamp	Speed	Direction	FIS Type	Description	Tag
88.732 us	3 Gbps	H->D	FIS 27 - Cmd: 0x60=READ FPDMA QUEUED	LBA = 0x000000027B7C Sec Cnt = 0x0004	0x0D
89.672 us	3 Gbps	D->H	FIS 34 - Status: 0x40 - DRDY	LBA = 0x0027B7C Sec Cnt = 0x6C	
99.068 us	3 Gbps	D->H	FIS 41 - DMA Setup - A: 0 I: 0 D: 1	DMA Tx Count = 0x00000800	
100.224 us	3 Gbps	D->H	FIS 46 - Payload Data	Bytes Transferred: 2048	
107.928 us	3 Gbps	D->H	FIS A1 - Set Device Bit - I: 1 Err: 0x00	Status Hi: 0x04 Status Lo: 0x00 SActive: 0x00002000	

Santa Clara, C August 2008 How efficient is the SATA protocol for SSDs?

Issue Command to Device

Timestamp	Speed	H->D Data	H->D Count	Host->Device Description	D->H Data	D->H Count	
88.396 us	3 Gbps	5757B57C		X_RDY			
88.408 us	3 Gbps	5757B57C		X_RDY			
88.552 us	3 Gbps				4A4A957C		R_RDY
88.564 us	3 Gbps				4A4A957C		R_RDY
88.732 us	3 Gbps	3737B57C		SOF			
88.744 us	3 Gbps	04608027	0	FIS 27 - Reg Host->Device			
				Features = 0x04=0bsolete			
				Command = 0x60=READ FPDMA QUEUED			
				C = 1 - Command Register Updated			
				PM Port = 0x0 - Default Port			
88.756 us	3 Gbps	40027B7C	1	Dev/Head = 0x40			
				Cyl High = 0x02			
				Cyl Low = 0x7B			
			-	Sec Num = 0x7C			
88.772 us	3 Gbps	00000000	2	Features(exp) = 0x00			
				Cyl High(exp) = 0x00			
				Cyl Low(exp) = 0x00			
00.704			_	Sec Num(exp) = 0x00			
88.784 us	3 Gbps	00000068	3	Control = 0x00			
				Sec Cnt(exp) = 0x00			
00.700	2.01	00000000		Sec Cnt = 0x68			
88.796 us	3 Gbps	00000000	4	Reserved			
88.812 us	3 Gbps	8373C6EF	5				
88.824 us	3 Gbps			CRC - Good			
00.000	2.01	D5D5B57C		EOF			
88.836 us	3 Gbps	5858B57C		WTBM			
88.852 us	3 Gbps	5858B57C		WTBM	EEEEDE70		
88.872 us	3 Gbps				5555B57C		R_IP
88.884 us	3 Gbps				5555857C		R_IP
88.992 us	3 Gbps				3535B57C		R_OK

<u>Overhead</u> 596 ns for H2D Register FIS

Command Accepted by Device

Timestamp	Speed	H->D Data	H->D Count	Host->Device Description	D->H Data	D->H Count	Device->Host Description
89.004 us	3 Gbps				3535B57C		R_OK
89.324 us	3 Gbps				5757B57C		X_RDY
89.340 us	3 Gbps				5757B57C		X_RDY
89.492 us	3 Gbps	4A4A957C		R_RDY			
89.504 us	3 Gbps	4A4A957C		R_RDY			
89.672 us	3 Gbps				3737B57C		SOF
89.684 us	3 Gbps				00400034	0	FIS 34 - Reg Device->Host
							DRDY
							BSY = 0, DRDY = 1, DF = 0, DSC = 0,
							DRQ = 0, CORR = 0, IDX = 0, ERR = 0
							Error = 0x00
							I = 0
							PM Port = 0x0 - Default Port
89.700 us	3 Gbps				40027B7C	1	Dev/Head = 0x40
							Cyl High = 0x02
							Cyl Low = 0x7B
							Sec Num = 0x7C
89.712 us	3 Gbps				00000000	2	Cyl High(exp) = 0x00
							Cyl Low(exp) = 0x00
							Sec Num(exp) = 0x00
89.720 us	3 Gbps	4A4A957C		R_RDY			
89.724 us	3 Gbps				0000006C	3	Sec Cnt(exp) = 0x00
							Sec Cnt = 0x6C
89.732 us	3 Gbps	4A4A957C		R_RDY			
89.736 us	3 Gbps				00000000	4	Reserved
89.752 us	3 Gbps				F2D77DD4	5	
89.764 us	3 Gbps						CRC - Good
					D5D5B57C		EOF
89.776 us	3 Gbps				5858B57C		WTRM
89.792 us	3 Gbps				5858B57C		WTBM
89.852 us	3 Gbps	5555B57C		R_IP			
^U 89.864 us	3 Gbps	5555B57C		R_IP			
89.960 us	3 Gbps	3535B57C		R_OK			

<u>Overhead</u> 320 ns R_OK to X_RDY latency

636 ns for D2H Register FIS

Device Says Let's Do the Data Tango

Timestamp	Speed	H->D Data	H->D Count	Host->Device Description	D->H Data	D->H Count	Device->Host Description
98.720 us	3 Gbps				5757B57C		X_RDY
98.732 us	3 Gbps				5757B57C		X_RDY
98.880 us	3 Gbps	4A4A957C		R_RDY			
98.896 us	3 Gbps	4A4A957C		R_RDY			
99.068 us	3 Gbps				3737B57C		SOF
99.080 us	3 Gbps				00002041	0	FIS 41 - DMA Setup
							A = 0
							I=0 D=1
							PM Port = 0x0 - Default Port
99.092 us	3 Gbps				0000000D	1	Buf ID L = 0x0000000D
99.104 us	3 Gbps				00000000	2	Buf ID H = 0x00000000
99.120 us	3 Gbps				00000000	3	
99.132 us	3 Gbps				00000000	4	Buf Offset = 0x00000000
99.144 us	3 Gbps				00000800	5	Tx Count = 0x00000800
99.160 us	3 Gbps				00000000	6	Reserved
99.172 us	3 Gbps				48724D2D	7	
99.184 us	3 Gbps						CRC - Good
					D5D5B57C		EOF
99.200 us	3 Gbps				5858B57C		WTBM
99.212 us	3 Gbps				5858B57C		WTBM
99.240 us	3 Gbps	5555B57C		R_IP			
99.256 us	3 Gbps	5555B57C		R_IP			
99.388 us	3 Gbps	3535B57C		R_OK			

<u>Overhead</u> 668 ns for DMA Setup FIS

Device Completes Command

Timestamp	Speed	H->D Data	H->D Count	Host->Device Description	D->H Data	D->H Count	Device->Host Description
107.388 us 107.568 us 107.580 us	3 Gbps 3 Gbps 3 Gbps	3535B57C		R_OK	5757B57C 5757B57C		X_RDY X_RDY
107.736 us	3 Gbps	4A4A957C		R_RDY			
107.752 us	3 Gbps	4A4A957C		R_RDY			
107.928 us	3 Gbps				3737B57C		SOF
107.940 us	3 Gbps				004040A1	0	FIS A1 - Set Device Bit
							Error = 0x00
							Status Hi = 0x4
							Status Lo = 0x0
							I = 1
							PM Port = 0x0 - Default Port
107.956 us	3 Gbps				00002000	1	SActive
107.968 us	3 Gbps				43B8CA03	2	CRC
107.980 us	3 Gbps						CRC - Good
					D5D5B57C		EOF
107.996 us	3 Gbps				5858B57C		WTBM
108.008 us	3 Gbps				5858B57C		WTBM
108.112 us	3 Gbps	5555B57C		R_IP			
108.124 us	3 Gbps	5555B57C		R_IP			
108.192 us	3 Gbps	3535B57C		R_OK			

<u>Overhead</u> 180 ns R_OK to X_RDY latency

624 ns for Set Device Bits FIS

- SSDs are an enormous jump in performance over hard drives
- As SSDs become mainstream, the protocol needs to be streamlined to account for this new level of performance
- The SATA bus overhead is 15% for a 4KB sequential read
 - Total time for 4KB read was 19.796 µs
 - Total SATA overhead was 3.024 μs
 - This does not account for any firmware processing overhead for SATA packets or ATA commands
- 3 µs is fantastic bus overhead for traditional HDDs, but the game changes with SSDs...

With SSDs, microseconds matter!

Agenda

Hidden Costs of Emulating Hard Drives

An Optimized Interface for Caches and SSDs

An Optimized Interface for NVM

- **NVMHCI:** Non-Volatile Memory Host Controller Interface
- NVMHCI is a clean and optimized interface for SSDs and caches
- NVM equivalent of the SATA AHCI controller interface

		Quick Links 👻 H	Iome Worldwide			
Microsoft		Search Microsoft.com for:				
	TANKING TO AND		Go			
PressPass - Informatio	n for Journalists					
PressPass Home	PR Contacts Fast Facts About Microsoft	Site Map Advanced	I Search RSS Feeds			
Microsoft News Product News Consumer News International Contacts Legal News Security & Privacy News Events	Dell, Intel and Microsoft Joi of NAND-Based Flash Men Newly formed group to provide st memory subsystems. REDMOND, Wash. – May 30, 2007 – Bro	nory in PC Pla tandard interface	for nonvolatile			
News Archive Corporate Information Microsoft Executives Fast Facts About Microsoft	NAND flash memory technology in the PC p boost with the formation of the Non-Volatile Controller Interface (NVMHCI) Working Gro Working Group is chaired by Intel Corporati contributors including Dell Inc. and Microsof	latform received a Memory Host up. The NVMHCI ion with core	Related Links External Resources: • Dell Web site • Intel Web site			
Image Gallery Broadcast Room	NVMHCI will provide a standard software pr subsystems. The interface would be used by					
Related Sites Analyst Relations Community Affairs Essays on Technology Executive E-Mail Global Citizenship Investor Relations Microsoft Research	"Several NAND solutions are coming on the ReadyDrive™ features of the Windows Vista manager of Windows Hardware Ecosystem interface will enable more integrated operat forward." Industry momentum for standardization in N NAND moves into the PC platform. NVMHCI	rd drive caching and solid-state drives. a scene to take advantage of the ReadyBoos (a [®] operating system," said Bob Rinne, gene at Microsoft. "Standardizing on a common c ating system support of these solutions movi NAND storage solutions is building, especiall I complements standardization work being d				
The PressPass Broadcast Room Broadcast-standard media for download	the Open NAND Flash Interface (ONFI) Worl "We've got a performance-enhancing NAND mobile technology platform called Intel Turt will help make that and a number of other N Rick Coulson, senior fellow and director of I standardize the interface between the Flash the register level interface between the Flash logical next step."	-based product in the po memory, and this r IAND-based solutions /O Architecture at Int controller and the NA	newly formed working group more prolific, faster," said el. "ONFI formed last year to ND itself, and standardizing			
RessPass Subscriptions RSS	"Nonvolatile memory solutions enable better system performance and lower power consumption as well as facilitate additional benefits such as smaller form factors, quieter systems and improved robustness," said Liam Quinn, director of communications for technology strategy and architecture at Dell. "Dell looks forward to working with industry partners and extending the benefits NVMHCI will bring to our customers."					
	The group is actively expanding its membership to include other industry-leading companies					

*Other names and brands may be claimed as the property of others

NVMHCI 1.0 Specification Ratified

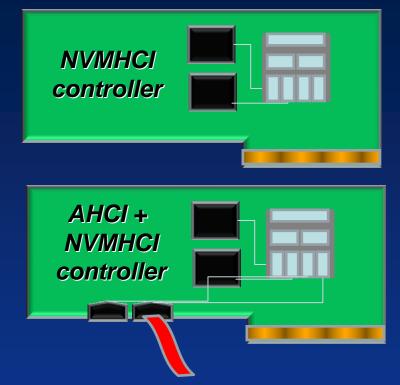
Non-Volatile Memory HCI Specification 1.0

- NVMHCI 1.0 complete!
- Less than one year from team formation to ratification
- Includes register set, DMA engine, and command set definitions

Non-Volatile Memory

Host Controller Interface

(NVMHCI) 1.0


NVMHCI 1.0 April 14, 2008

Available for download at: http://www.intel.com/standards/nvmhci

Santa Clara August 2008

Technical Essence of NVMHCI

- NVMHCI defines a standard programming interface for non-volatile memory subsystems
- Leverage AHCI to provide best infrastructure for caching
 - One driver for HDDs and NAND
- Allows NVMHCI registers to appear as:
 - A separate PCI device
 - A port within an existing AHCI controller
- NVMHCI is a logical interface
 - All NAND management abstracted out: NAND technology changes too quickly
 - All caching algorithms are outside the spec: NVMHCI only defines how caching software gets access to the NAND
- Optimized interface for both cache and SSD usage models

Optimizing for Cache: Atomic Metadata

- NAND pages each have spare area
 - Used primarily for storing ECC syndromes
 - Also used for storing some NAND management or caching information
- NVMHCI exposes some spare area as metadata to the host
 - May be used in caching applications

 e.g. What disk LBA is this data associated with?
 - Metadata is on an NVM page basis
 - Written atomically with the NVM page
 - The host may use metadata as it chooses
- Atomic metadata is not available in traditional HDD interfaces, making NVMHCI ideally suited for caches

Optimizing for NVM

- NVMHCI has eight commands total
 - One read, one write

Enumeration	Identify
Configuration	Get Features, Set Features
Health Monitoring	Get Status
10	Read, Write, Flush
Management	Data Set Management

- NVMHCI provides priority per command and information on the subsequent workload for better NVM subsystem optimizations
- NVMHCI added a Physical Region Descriptor (PRD) Index Table so that unaligned writes could be optimized for cached/multi-plane programs
 - Out of order data delivery in SATA NCQ not used due to difficulty in host • walking PRD table on each DMA Setup

PR: Priority	Indicates the priority of the request: The NVM subsystem may use this info	mation to					
	help determine the command to service Indicates the number of queued read re		31	23	15	7	0
UR: Upcoming Reads	are yet to be issued by host software. requests may be for any sector location	NVM Page n	Dword	l Offset	PRE) Entry	
	Indicates the number of queued write r	NVM Page n+1	Dword	l Offset	PRE) Entry	
UW: Upcoming Writes	are yet to be issued by host software. requests may be for any sector location	NVM Page			•••		
Avg WS: Average Write	This field indicates the average size in NVM pages for the queued write reque	NVM Page n + x	Dword	l Offset	PRE) Entry	
Size	yet to be issued by host software.						18

- NVMHCI allows commands to be executed out of order, and includes priority and timeout information
- NVMHCI allows interrupt combining on a per-command basis
 - In AHCI, every command interrupts on completion
- Dataset management enables performance, latency, and endurance to be optimized by the NVMHCI controller
 - Dataset management communicates read/write frequency, read/write latency, access size, deletes/trims for LBA ranges

WF: Write Frequency 05:04	Value 00b 01b 10b 11b	Definition No write frequency information given. Long term storage. Written less than once on average per NVM device power cycle. User's current working set. Written once on average every NVM device power cycle. Dynamic data. Written more than once on average per NVM device power cycle.
---------------------------	-----------------------------------	---

Santa Clara, August 2008

- NVMHCI is a register interface and command set used by software drivers to communicate with NVM
- NVMHCI does not define the underlying NVM hardware architecture used
 - Could be discrete PCIe card
 - Could be a direct NAND interface (e.g. ONFI)

Hardware interface to NAND is NVMHCI implementation specific.

Summary

- Serial ATA SSDs deliver great performance beyond hard drives and take advantage of infrastructure in place today
- We can do even better with NVMHCI
 - Streamlined command set
 - Optimized features (metadata, PRD Index Table, dataset management, etc.)
 - Combined with AHCI for best caching interface (one driver controlling HDDs and cache)
- The NVMHCI 1.0 specification and information on joining the committee is at www.intel.com/standards/nvmhci

Get involved with NVMHCI today!

This presentation contains forward-looking statements that involve a number of risks and uncertainties. These statements do not reflect the potential impact of any mergers, acquisitions, divestitures, investments or other similar transactions that may be completed in the future. The information presented is accurate only as of today's date and will not be updated. In addition to any factors discussed in the presentation, the important factors that could cause actual results to differ materially include the following: Demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including conditions in the credit market that could affect consumer confidence; customer acceptance of Intel's and competitors' products; changes in customer order patterns, including order cancellations; and changes in the level of inventory at customers. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; Intel's ability to respond quickly to technological developments and to incorporate new features into its products; and the availability of sufficient supply of components from suppliers to meet demand. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; product mix and pricing; capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and associated costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, vary depending on the level of demand for Intel's products, the level of revenue and profits, and impairments of long-lived assets. Intel is in the midst of a structure and efficiency program that is resulting in several actions that could have an impact on expected expense levels and gross margin. Intel's results could be impacted by adverse economic, social, political and physical/infrastructure conditions in the countries in which Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. A detailed discussion of these and other factors that could affect Intel's results is included in Intel's SEC filings, including the report on Form 10-Q for the guarter ended June 28, 2008.

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.
- Intel may make changes to specifications and product descriptions at any time, without notice.
- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.
- Intel, Intel Inside and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
- *Other names and brands may be claimed as the property of others.
- Copyright © 2008 Intel Corporation.